以下是小编为大家准备的数学五年级上册的教学设计(共含12篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“kksf87”一样,积极向本站投稿分享好文章。
教学目标:
1、使学生能够运用分数表示可能性的大小,自主的设计一些活动方案。
2、对实际生活中的事件和现象,学生能运用可能性的知识进行合理地解释。
教学重点:
在学生学习分数表示可能性大小的基础上,提出自主设计方案。
教学难点:
让学生自主设计活动的方案
教学过程:
一、课前谈话
教师做自我介绍。(生自由介绍)
你们学校五年级有几个班啊?咱班被选中和老师一起来上课的可能性是多少?(生答)嗯,很难得!
这次讲课活动啊,共有55位数学老师参加,那老师被抽到给你们上课的可能性是多少?(五十五分之一)是啊,在可能性这么小的情况下,老师有幸为你们上课,这个机会更难得!所以老师觉得,我和你们真的很有缘分,你们觉得呢?那么,就让我们好好的珍惜这份缘分,好好的利用这一节课的时间,可以吗?
二、创设情境
同学们啊,你知道马上就要到什么节日了吗?(生:圣诞节)圣诞节这天你最盼望的是什么啊?(收到礼物)
今天老师也给你们准备了礼物,想要吗?只可惜,老师准备的礼物不够,那我们不如玩个幸运摸奖游戏,试试你的运气,怎么样?摸到红球的同学可以得到老师准备的礼物哦,谁愿意来试一下?(生摸球)
老师这个盒子里放入了1个红球、两个白球、三个红球,通过游戏想一想,摸到红球的'可能性是多少?(生答)怎么想的?
师:在游戏中我们运用上节课所学的知识知道了“摸到红球的可能性是六分之一,像这样好玩又有趣的游戏你能设计吗?那今天这节课我们就来当一次小小设计师。
(板书——设计活动方案)
三、探究新知
设计活动一
(1)刚才只有x位同得到了礼物,可是老师很想把这些礼物都送给大家,那么怎样往盒子里放球,会使你们摸到红球的可能性大一些呢?(生陆续举手)看样子,有的同学已经有了自己的想法,下面就以小组为单位,把你的想法与小伙伴们交流,看你们能设计出什么样的方案?开始吧!
(2)小组活动,师巡视指导。
(3)哪个小组愿意到前面来汇报一下你们的设计方案?
(4)生分组汇报。
设计活动二
(1)为我班学生设计节目表演活动方案。师出示要求,生读题。
(2)学生同位合作填表格,师巡视指导。
(3)学生汇报,师汇总。
(4)观察这些方案,你有什么看法?
设计活动三
(1)为了调动同学们的积极性,凡是参加活动的30名同学都可以得到一份纪念品,根据他们的兴趣爱好,我准备了食品、学习用品和小型玩具三种纪念品,要使同学们得到学习用品的可能性是五分之二,该如何设计呢?你能帮我设计一个活动方案吗?
(2)独立设计活动方案,教师巡视指导。
(3)学生汇报,教师汇总,那对于这些方案,你又有什么发现?
那你能不能根据他们的共同点,对这些方案进行总结一下?
四、巩固应用
现在很多商场超市在节日期间,都想出了很多别出心裁的促销活动。
1、下面是老师的调查情况(出示课件)学生读题。
2、同学们以小组为单位,进行设计。
3、汇报想法,实物投影总结活动情况。
4、看看另外一个商场的促销活动吧!(课件)学生读题
五、总结
通过本节课的学习,你都有哪些收获?你有什么体会?
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题。
2.提高学生分析问题,解决问题的能力。
3.培养学生大胆尝试,勇于探索的精神。
教学重点
1.找到与求路程应用题的内在联系。
2.正确分析解答求相遇时间的应用题。
教学难点
掌握求相遇时间应用题的解题思路。
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题。
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画。
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇。
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和。
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答。
2.订正答案。
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
教学内容:
教科书58页例1。
教学目标:
1、结合图例,根据等式不变的性质,学会解简易方程。
2、掌握解方程的书写格式,并能用代入法进行检验。
3、提高学生的分析、理解能力,同时渗透函数的思想。
教学重点:
掌握解方程的方法和书写格式。
教学重点:
掌握解方程的方法。
教具准备:
可见、平台
教学过程:
一、复习。
1、提问:什么是方程?
2、判断下面各式哪些是方程?
3、后面括号中哪个x的值是方程的解?
(1)X +42=98 (X =57,X =135)
(2)5.2- X =0.7 (X =4.5,X =8.8)
4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)
5、导入:今天,我们就利用等式的性质来解方程。
板书课题:解方程
二、新课学习。
1、出示例1的图
(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?
(盒子里有X个皮球和外面3个皮球等于9个皮球)
(2)请学生根据关系列出式子。
板书:X +3=9
(3)问:怎样解这个方程呢?(出示课件)
(4)师:我们可以用天平保持平衡的道理来帮助解方程。
(5)看课件演示
问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?
(6)学生思考后回答。
(7)演示课件
教师一边演示一边在黑板写出:X +3-3=9-3
(8)师生小结:方程两边同时减去同一个数(3)
(9)问:为什么要减3,减2可以吗?学生回答
(10)天平两边同时减去同一个数,天平两边还平衡吗?
出示课件,学生回答:平衡
师板书:左右两边仍然相等
(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)
2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程
的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)
3、质疑:看书58页,还有什么不明白的地方?
(通过练习测试学生的掌握程度)
教学目的:
1、在学习了统计表和统计图这一单元后,让同学利用所学的统计知识,认识我们身边浪费水的现象,从而树立节约用水的意识。
2、通过动手操作和分析,认识水环境的污染,认识到节约用水要从节约每一滴水做起。养成不论在何时何地,都要节约用水的好习惯。
教学重点:
通过数学计算和分析,认识到节约用水的重要性,提出有效的节水措施。
教学准备:
学具:计算器、三角板、铅笔; 课前同学收集有关水资源知识;教具:多媒体课件。
教学过程:
一、创设情景,引出问题。
师:同学们,现在我们全世界人民的目光都在关注着哪里?
(生齐答:伊拉克战争。)
师:美、英等国为什么不顾全世界人民的反对要向伊拉克发动战争呢?
(生答:想占领伊拉克的石油。)
师:关于战争,联合国的有关组织曾说了一段这样的话
(多媒体播放声画)
紧接着师导入:石油争完了,再过几年或几十年,人类将面临着争水的战争,同学们,作为二十一世纪的小主人,你们有什么感想?
(生:美国人真可恶
我们中国缺水吗?水不是用之不竭,取之不尽吗,为何还要打仗呢?)
二、分析问题,得出结论
1、师抓住刚才同学提出的水不是用之不竭,取之不尽吗,为何还要打仗呢?这个问题,你们认为这位同学说的有道理吗?先分组讨论一下,然后你们能根据课前你所收集的资料进行说明吗?
(生分组讨论,师巡视观察)
2、生分组汇报讨论的结果。最后引导得出:我们中国是一个缺水的国家,深圳是一座缺水的城市,我们大家都要节约用水。
3、师:同学们,在我们平时的日常生活中,常可以碰到这样的情况:水龙头或水管坏了,水一滴一滴地往外流(多媒体出示),遇到这种情况你会怎么办?
生1:不论他,一滴一滴地滴也滴不了多少
生2:修好他,或换一个
同学们,你同意哪一种说法呢?(少数同学同意第一个说的。)你们能用我们所学的数学知识来说服第一种说法的同学吗?先自由地讨论一下。
【教学内容】
教材第77页例3、“做一做”和练习十七的第1~4题。
【教学目标】
1.通过教学使学生掌握两积之和等于已知的总和和含有小括号的方程的解法,并会列方程解具有这种数量关系的应用题。
2.培养学生分析问题的能力和用多种方法解决问题的能力。
3.培养学生认真检验的良好习惯。
【重点难点】
寻找题目中的等量关系。
【教学准备】
教具:多媒体
【复习导入】
1.解方程。
2x-3=5 4.5+3x=13.5
2.妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?学生读题后,独立列式计算,并说出数量关系。
苹果的总价+梨的总价=总钱数
2.4×2+2.8×3=13.2(元)
3.揭示课题:这节课我们继续学习实际问题与方程。(出示课题)
【新课讲授】
1.教学“列方程解两积之和的应用题”。
(1)出示情景图。
每千克苹果多少元?
(2)列方程并解方程。
让学生独立写出等量关系,列方程并解方程。
苹果的总价+梨的总价=总钱数
解:设苹果每千克x元。
2x+2.8×3=13.2
2x+8.4=13.2
2.教学例题3。
出示例题3。
把上面的例题改成例题3:妈妈买了苹果和梨各2kg,共付10.4元,已知梨每千克2.8元,苹果每千克多少钱?
提问:这道题与上一题有什么异同?(这道题的数量关系和上个例题一样;只是部分数字进行了改动,解题方法也和上题一样)
学生独立解答。
(1)学生审题,说出解题思路。
(2)口头列出方程:2x+2.8×2=10.4。
(3)在课本上写出解答过程。
全班交流汇报,教师引导总结解法:
(1)用未知数x表示每千克苹果的价钱。
(2)根据苹果的总价+梨的总价=总钱数列方程。2x表示苹果的总价,2.8×2表示梨的总钱数。
(3)根据解2x+2.8×2=10.4这个方程的方法,把2.8×2先算出来,把2x看作一个整体,转化成我们学过的方程的类型来解方程。
教师边讲解边板书。
解:设苹果每千克x元。
2x+2.8×2=10.4
2x+5.6=10.4
2x+5.6-5.6=10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
(4)经检验,x=2.4是方程的解。
3.探究第二种解法。
提问:除了上面的方法外,还有什么方法?(学生独立思考后,试着用另一种方法列出方程,说出自己的思路)
让学生说出数量关系,并列出方程。
板书:(苹果的单价+梨的单价)×2=总钱数
解:设苹果每千克x元。
(x+2.8)×2=10.4
讨论:这个方程怎样解?自己动手试一试。
学生汇报交流。
教师引导学生总结:在解这个方程时,可以把小括号内的2.8+x看作一个整体,先求出2.8+x等于多少,再求出x等于多少。
板书:解:设苹果每千克x元。
(2.8+x)×2=10.4
(2.8+x)×2÷2=10.4÷2
2.8+x=5.2
2.8+x=5.2-2.8
x=2.4
4.比较两种解法。
提问:例3中的两种解法列出的方程有什么联系吗?
方程1:2x+2.8×2=10.4
方程2:(2.8+x)×2=10.4
学生自由发言。
讲解:从第二个方程到第一个方程,实际是利用了乘法分配律;从第一个方程到第二个方程;实际上是应用了乘法分配律的逆运算。
【课堂作业】
1.完成教材第77页“做一做”。
这道题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
2.完成教材第80页练习十七的第1~3题。
【课堂小结】
提问:本节课你又学会了解哪些类型的方程?还有不明白的问题吗?
小结:这节课我学会了两积之和等于已知的总和及含有小括号的方程的解法。
【课后作业】
教材第80页练习十七第4题。
【教学目标】
知识目标:
1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。
能力目标:
1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。
2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。
情感目标:
培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。
【教学重点】
教学重点:引导学生发现棵数与间隔数的关系。
【教学难点】
理解间隔与棵树之间的规律并运用规律解决问题。
【教学过程】:
一、激趣导入,谜语导入激发学生的兴趣。
同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。
一颗小树五个叉
不长叶子不开花
能写会算还会画
天天干活不说话
谜底:(手)
出示课件,让学生举手回答谜底,并作表扬或鼓励。
1、师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?
在我们的生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。
二、构建模型
1、了解植树问题中棵数与间隔数之间的关系
师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)
3、利用模型解决问题
1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?
(1)说说从题中你知道了哪些数学信息?(让学生举手回答)
(2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)
(3)分析题意。
“全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。
(4)算一算一共需要多少棵树苗?(学生独立完成)
(5)学生汇报交流。
(6)反馈答案:
方法1:20÷5=4(棵)
方法2:20÷5=4(段)4+1=5(棵)
到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)
谁能够完整地说一说这个算式的意思?
2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)和刚才这题比较,你想说什么?
(2)学生独立列式并汇报。
3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?
(1)出示第一关:说一说。让学生自己读题,抢答。
(2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)
(3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)学生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?
(4)学生独立解答并汇报:
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?
(7)有谁听懂了这个算式的意思,说给大家听一听?
四、回顾小结
这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?
板书设计
植树问题——两端都种
棵数=间隔数+1
间隔数=棵数-1=总长÷间距
总长=间隔数×间距
间距=总长÷间隔数
设计说明:
本节课通过学习分数的大小比较,既能使学生掌握分数大小比较的方法,又能使学生从中学习通分的相关知识。通分也是分数基本性质的应用,它是把几个分母不同的分数化成分母是指定数的同分母分数题目的进一步发展。学习通分的关键是确定公分母及找出原分数的分子、分母需要扩大的倍数。因此,在学习通分时,应先明确通分的思路,再准确地掌握通分的方法。
在教学过程中,引导学生说出各种不同的分数大小比较的方法,使学生充分体会比较策略的多样性。同时利用数形结合的方法,让学生掌握分数大小比较的方法,有效地培养学生的动手操作能力及数学思维,使学生体会到学习数学的乐趣。
课前准备:
教师准备:
PPT课件
教学过程:
⊙创设情境,谈话激趣
引导学生观察教材情境图,明确学习任务。
课件出示学校的平面图,上面标出教学楼、操场和宿舍楼的面积分别占校园面积的,和,并出示教材83页第一个问题。
师:题中要求什么?(求操场和宿舍楼谁的占地面积大)
师:实际上就是求什么?(就是求和谁大)
师:同学们,这节课我们就来探究和谁大谁小,从而求出操场和宿舍楼谁的占地面积大。
设计意图:结合例题,开门见山,揭示课题,激发学生的探究欲望。
⊙实践探究,学习分数大小比较的方法
1、观察和,找出这两个分数的特点。(这两个分数的分子和分母都不相同)
2、质疑:运用以前学习的分数大小比较的方法,能比较出这两个分数的大小吗?(小组讨论后汇报:运用分子相同或分母相同的分数大小比较的方法,都不能比较出这两个分数的大小)
3、探究和哪个分数大。
(1)学生先独立思考,然后在小组内交流、探究,教师巡视指导。
(2)整理各小组的比较方法。
方法一:画图比较法,如下图。
从图中可以看出>。
方法二:先化成分母相同的分数,再进行比较。
因为=,=,>,所以>。
方法三:先化成分子相同的分数,再进行比较。
因为=,>,所以>。
师:有的同学用画图比较法直观、形象地比较出两个异分母分数的大小;有的同学利用分数基本性质把两个异分母分数转化成分子或分母相同的分数,比较出了和的大小。你们都能充分利用已有知识经验解决问题,真棒!
(3)判断操场和宿舍楼谁的占地面积大。
师:通过上面的比较,说一说谁的占地面积大。
(操场的占地面积大)
设计意图:在课堂教学中,学生是学习的主体。为此,教师大胆放手让学生自己探究分母、分子均不相同的分数大小比较的方法,并给予充分的空间和时间让学生经历知识的形成过程,这样不仅可以让学生从中体验到成功的快乐,还能让学生理解和应用新知。
⊙探究通分的意义和方法
1、明确通分的意义。
师:观察方法二,这两个分数是根据什么转化成了分母相同的分数?(分数的基本性质)
师:在利用分数基本性质转化的过程中,分数的大小变不变?(不变)
师:把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。
2、明确通分的方法。
师:将和进行通分,是以什么作分母?(以和的分母的最小公倍数作分母)
师:试一试,能用7和6的公倍数作分母吗?(学生在练习本上尝试)
学生讨论后得出:可以用两个分数分母的公倍数作分母。
师:你喜欢哪一种通分的方法?为什么?(喜欢用两个分数分母的最小公倍数作分母这种方法,因为这种方法比较简便)
3、试一试。
师:你能用通分的方法比较宿舍楼和教学楼谁的占地面积大吗?
(学生先独立解决,然后全班交流,说一说通分的方法)
预设生1:通分时,可以用6和10的公倍数作分母。
生2:可以用6和10的最小公倍数30作分母,因为=,=,<,所以教学楼的占地面积大。
设计意图:通过实际演练、讨论,经历探究知识的过程,更好地理解和掌握新知。
⊙拓展练习,巩固新知
1、把下面各组分数通分。
和和和
2、甲、乙二人安装同一种机床,甲安装3台用4时,乙安装5台用6时。谁安装得快?
3、在》中,里可以填哪些整数?
⊙课堂总结
通过本节课的学习,你有哪些收获?
教学内容:
人教版23页至24页例1以及相应的“做一做”。
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4发展学生综合运用知识解决简单实际问题的能力。
教学重点:
掌握用正比例的方法解答应用题
教学难点:
能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、谈话导入:
1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?
2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。
二、新课教学:
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1)请一位同学读一读题目
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)让学生自己解答,边订正边板书:
140÷2×5
=70×5
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2) ________一定,_________和_________成_______比例关系。
(3) ______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1)用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。
(2)明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析判断
2.找出列比例式所需的相等关系
3.设未知数列等式
4.求解
5.检验写答语
四、练习提高
1、基本练习
(1)例题改编
①如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?
②让学生解答改编后的应用题,集体订正。
③ 小结:比较一下改编后的题和例1有什么联系和区别?
例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
2、变式练习
3、实践运用
(1)汇报数据:刚才我们上课时提到怎教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。
教材分析
可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。
学情分析
五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。
教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。
教学目标
知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。
数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。
问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。
情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。
教学重点:
会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。
教学难点:
能根据可能性的大小判断物体数量的多少。
课时安排:
3课时
1.可能性………………………………2课时
2.掷一掷………………………………1课时
课 时 教 案
课题: 第四单元:可能性(1) 第x 课时 总序第x个教案
课型: 新授
编写时间:xxxx年xx 月xx 日
执行时间:xxxx 年xx月xx日
教学内容:教材P44例1及教材练习十一第1、2、3、4题。
教学目标:
知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。
过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。
情感、态度与价值观:培养学生的表达能力和逻辑推理能力。
教学重点:体验事件发生的等可能性。
教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。
教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。
教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。
教学过程
一、情境引入
1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?
让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书
2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)
3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。
学生可能会说:铅笔。
师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。
4.出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。
二、互动新授
1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?
组织小组讨论,大部分同学会想到用抽签的方法来决定。
2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?
学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。
师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。
3.抽签指生抽一张。(以抽到跳舞为例)
师引导:如果再找一名同学来抽签,可能会抽到什么?
生可能回答:可能是唱歌,也可能是朗诵。
引导学生质疑:有没有可能会抽到跳舞?
指生回答:不可能,因为剩的两张签里没有跳舞。
找生抽一张,验证学生的猜测是否正确。
(以学生抽到的是朗诵为例)
4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?
生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。
5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能 不可能 一定)
三、巩固拓展
1.完成教材第45页“做一做”。
出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。
引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。
让学生在小组内组织摸一摸活动,并验证,再集体汇报。
2.完成教材第47页“练习十一”第1题。
让学生说一说,并说明理由。
3.完成教材第47页“练习十一”第2题。
先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。
4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。
四、课堂小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.判断事件发生的可能性的几种情况:可能、不可能、一定。
2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。
作业:教材练习第47页第3、4题。
板书设计:
可能(不能确定)
可能性 不可能
(完全确定)
一定
课题: 第四单元:可能性(2) 第x 课时 总序第x 个教案
课型: 新授
编写时间:xxxx 年xx月xx日
执行时间:xxxx年xx月xx日
教学内容:教材P45~46例2、例3及练习十一第5、8题。
教学目标:
知识与技能:让学生知道事件发生的可能性是有大小的。
过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。
情感、态度与价值观:培养学生的动手操作、归纳和判断能力。
教学重点:会比较两种结果事件的可能性大小。
教学难点:能根据可能性的大小逆向思考比较事件数量的多少。
教学方法:游戏教学法;自主探索、合作交流。
教学准备:多媒体、盒子、彩色棋子。
教学过程
一、复习引入
1.出示:
(1)用合适的语言描述下面事件发生的可能性。
①太阳( )从东边落下。
②明天( )考试。
③冬天( )会下雪。
④掷一枚硬币( )正面朝上。
(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。
质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?
引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。
2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)
二、互动新授
1.体验可能性有大有小。
出示教材第45页例2情境图。
(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)
(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)
(3)追问:这说明了什么?
(摸到红棋子的可能性比较大,蓝棋子的可能性小。)
(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?
(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)
2.动手操作。
(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。
小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?
指名小组汇报,对不同结果的小组进行比较。
(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?
引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)
(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。
3.出示教材第46页例3。
(1)先让学生观察出示的记录结果,再指名回答例题中的问题。
(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。
八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)
(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。
三、巩固拓展
1.完成教材第45页“做一做”。
先让学生自主思考,小组交流,再汇报。并说出为什么这么想。
引导学生总结:在总数中占的'颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。
2.完成教材第46页“做一做”第1题。
先让学生观察从图中能得到的信息,再说一说。
(盒子里红色的棋子多,黄色的棋子少)
引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)
四、拓展小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.事件发生的可能性有大有小。
2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。
3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。
作业:教材练习第47~48页练习十一第5、8题。
板书设计:
大←→数量多
可能性
小←→数量少
教学内容:
苏教国标版数学五年级上册第59~60页例1及相应的“试一试”、“练一练”、练习十第1-3题。
教学目标:
1、结合具体情境,让学生探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形。
2、使学生主动经历探索发现、合作交流的过程,体会画图、列举、计算等解决问题的不同策略,能根据实际情况,选择合适的解决问题的策略。
3、让学生在探索规律的过程中体会数学与日常生活的联系,获得运用所学
知识解决问题的成功体验,建立自信心。
教学重点:使学生探索发现简单周期现象中的排列规律(找规律),并能选择合适的策略解决这类问题。
教学难点:让学生会确定几个物体为一组,如何根据余数来确定某个序号所代表的是什么物体或图形。
教具准备:多媒体课件。作业纸附件。
教学过程:
课前播放《喜羊羊与灰太狼》主题曲《别看我只是一只羊》。会的学生跟着哼唱。轻松课前的气氛。
游戏导入,激发兴趣。
刚刚的歌曲熟悉吗?谁来说说看你最喜欢里面的哪一个卡通形象?(让学生说)老师最喜欢喜羊羊,因为它聪明又乖巧(课件出示喜羊羊图片)那请你猜一猜,下一个会出现谁?第三个呢?接着猜。第四呢?第五个呢?第六个呢?你是怎么猜出来的?你真聪明,其实在我们平时的生活中,像这样有规律的排列现象还有很多很多,今天我们这节课我们就来一起学习一下“找规律”。(板书课题)
设计意图:本节课从一开始就创设了一个轻松的氛围,从最近受学生欢迎的国产动画片《喜羊羊与灰太狼》入手,让学生在不知不觉中,在一个愉悦的氛围中进入了课堂,并且开始初步探索他们感兴趣的卡通形象的排列规律,很好的激发了学生的兴趣。
感知物体的有序排列,探究简单的周期规律
师:请你先闭上眼睛,老师带你去一个非常漂亮的地方(课件出示图片),看,这地方你们认识吗?对了,我们来到了喜羊羊他们生活的地方——青青草原。来到了这个地方,你有什么感受呢?
生:青青草原被装扮的好漂亮啊!
师:恩,的确,草原上盆花似锦,彩灯高挂,彩旗招展,好美呀。大家有没有发现,在这些美丽的图片上其实也蕴含着数学的许多奥妙。老师截取了其中的一小部分,放大,请大家仔细观察。
一.(出示教材例1主题图)师:我们一起看这一幅图,从图中你都看到了哪些物体?
生:盆花、彩灯、彩旗;
师:恩,你观察的真仔细。
师:那这些物体的摆放有规律吗?谁来说一下盆花的摆放有什么规律?
生:一盆蓝花,一盆红花。师:恩,你真聪明。也就是说几盆为一组呢?
生:两盆花为一组。
师:恩,你讲的真棒!那我们可以在图中这样表示出来。(教师电脑演示)
师:那彩灯、彩旗的摆放又有什么规律呢?你能照着样子在练习纸上圈一圈吗?(学生自己圈一下,体会每组有几盏彩灯?每组有几面彩旗?)
二、汇报结果。
师:那谁来说说看彩灯的摆放有什么规律?应该是几盏为一组?每组的几盏灯分别按怎么样的顺序排列的呢?
生:3盏灯为一组,每组的三盏灯分别是按红、紫、绿的顺序排列的。
师:那彩旗呢?谁来说?
生:每四面为一组,分别是红色、红色、黄色、黄色。
师;恩。说的非常棒。
师:其实啊,像这里的盆花、彩灯、彩旗它们都是每几个为一组,一组一组依次重复排列的。(板书:依次重复排列)
设计意图:这个环节选择了日常生活中较为常见的简单周期现象作为学生探索规律的素材,把生活中按规律摆放的盆花、彩灯、彩旗等场景与喜羊羊与灰太狼生活的草原结合起来,把学生能够把更多的注意力集中到这些不同物体排列规律的观察上来。其实要让学生说出各类物体的摆放顺序并不难,但关键是怎么样让学生用较为简洁的语言表达清楚。在设计此环节时,我注意了这么一点:特别是在交流时,应该在学生自由汇报的基础上,老师用规范的数学语言引导学生把观察到的规律用简洁、准确的语言清楚的表达出来。为下面的计算法解题策略作一个铺垫。
三、自主探究,体会多样的解题策略。
刚才同学们都观察得很仔细,说得也非常好,找到了他们排列的规律,也就找到了解决问题的金钥匙。
那首先我们来看盆花。(点击出示盆花小图)初步提问:在图中,我们能
看到几盆花?
提问:照这样摆下去,左起第15盆花是什么颜色?谁来猜一猜。(请几个
学生猜一猜)那你们是怎么想的呢?先把你的解决过程在练习纸上表示出来,然后同桌之间交流一下,比一比,你们的方法有什么不同?开始。
3.全班交流。
引导:谁愿意把你方法介绍给全班同学?
学生可能提出如下的想法。(适时板书:画图、推想、计算)
生1:画图的策略:o ● o ● o ● o ● o ● o ● o ● o(o表示蓝花,
●表示红花)第15盆是蓝花。
教师提问:你一共画了多少个“圆”?(15个,正好是蓝花。)
生2:推想的策略:左起,第l、3、5……盆都是蓝花,第2、4、6……盆都是红花。第15盆是蓝花。
教师提问:其他同学明白这种想法的意思吗?(引导学生说出位置是单数的都是蓝花,双数的都是红花),像这种方法我们数学上把它叫做推想的方法。
生3:计算的策略:把每2盆花看作一组,15÷2=7(组)……1(盆),第15盆是蓝花。
学生说,师板书:15÷2=7(组)……1(盆)答:第15盆是蓝花。针对算式,教师提问:能说说2是从哪里来的?(每2盆花为一组)。7表示什么意思呢?(一共有这样的7组)。注意7的单位是“组”,而不是“盆”,余下的1盆指得是哪一盆?(是指接下来一组的第一盆,与每组的第一盆颜色相同)。
设计意图:此环节的教学,应给学生充分的时间去研究观察物体排列规律以及自主的探索解决此类实际问题的策略。每个学生都是有差异的个体,他们有自己解决问题的经验,对每一个问题都有自己的理解和处理方式。我在设计时尊重学生提出的每一种方法,并没有急于的进行优化策略。让学生在接下来的解决问题中发现问题,自己优化、选择合适的策略。
四、独立尝试,逐步优化解题方法。
1.出示“试一试”第1题,让学生自己尝试解答。
(1)师:我们再来看看彩灯,用你喜欢的方法思考:“从左边起第17盏彩灯是什么颜色的?”
(2)引导学生针对计算的方法质疑思考:为什么除以3?(每3个彩灯可以看作一组)余数2呢?表示什么意思呢?(接下来一组的第二盏是紫色的灯。)
师:那根据第17盏灯是什么颜色很快的说出18盏灯是什么颜色?
生:绿色。
师:恩!真棒!你是怎么想的呢?那你们会用计算的方法来验证一下吗?试试看。共4页,当前第2页1234
学生汇报计算过程。表扬学生。
除数为什么是3?(每三盏灯为一组)那这里没有余数怎么办呢?也就是说这个物体和每组中的第几个相同呢?
如果没有余数呢?(强调:有余数,余数是几,这个物体就和每组中的第几个物体相同;如果没有余数,这个物体就和每组中的最后一个物体相同)
(3)重点比较:通过两题的解答,你认为用哪种方法解决找规律的问题更简便?(计算的方法最简便。)
师:是的,用计算的方法解决找规律的问题既快又准确。
2.出示“试一试”第2题,让学生用计算的方法解答。
(1)师:这里还有彩旗,请大家用计算的方法,求求看。
(2)总结提炼:这些题为什么都要除以4?余数是几时是红旗?黄旗呢?
设计意图:在提倡运用多种策略解题的基础上,引导学生对各种方法进行分析、比较,并逐步理解各种方法的优缺点,在解决实际问题中自觉实现策略优化,同时让学生获得成功的体验。
五、多样练习,加深对解题方法的理解
1.看活动图片:练一练第1题。
(1)引语:跨过草原,让我们一起进入羊村,来到羊羊学校,看看小羊们都在干些什么吧!
(2)出示喜羊羊,瞧,喜羊羊正在勤奋刻苦,研究黑白棋子呢!看,他摆的棋子有规律吗?请你在练习纸上圈一圈发现的规律。指名说说规律。(每三颗为一组,两颗白子,一颗黑子)
提出问题:如果继续摆下去,猜一猜,第21枚摆的是白子还是黑子?(口头汇报,并说说怎样想的)
(3)第100枚呢?(学生动手做一做,指名交流)
2.练一练第2题。
(1)引语:美羊羊的手工制作多棒呀,她正在按绿、黄、蓝、红的顺序穿一条彩色手链呢,瞧,多漂亮呀!如果按照这个顺序串下去,第18颗珠子是什么颜色?第24颗呢?
(2)学生口答。
3.画图形:
练一练第3题。
师:出示戴着眼镜的慢羊羊结合想想做做3,同学们,聪明的你能出色的完成慢羊羊村长交给你的这个任务吗?
(1)学生独立完成。汇报交流。
看来啊同学们还学得真棒,慢羊羊难不倒我们。准备奖励我们一下。可是懒羊羊不服气了,这有什么难的,我还会自己设计按规律摆放的图形了!出示思考题,学生思考。你觉得懒羊羊摆放的图形有规律吗?如果按照这样摆下去,第17个图形是什么图形?
……
(2)学生讨论,反馈自己的想法。教师适当指导。小结:所以我们在找规律时一定要仔细观察,看清是从哪一个图形开始找起的。
设计意图:练习设计主要是基础性练习,同时也有开放性、拓展性练习,关注课堂中每一个学生,让每一个学生在课堂中都有不同程度的发展。特别是最后一题拓展,更加强调了有时物体摆放的规律并不一定要从第一个找起,有时是从第二个,甚至第三个开始才有规律的。所以找规律一定要仔细、认真。
六、全课小结,回顾与反思学习过程
1.同学们,今天学习了什么内容?在那么多解决找规律问题的方法中你觉得哪种方法比较好?共4页,当前第3页1234
2.我们今天找到了许多规律,也用规律解决了许多问题。其实大自然中也蕴藏着很多的有规律的现象……
欣赏大自然的规律。(草原上春夏秋冬,月圆月缺的变化……)
欣赏生活中的规律。(红绿灯的交替变化)
同学们,只要我们留心观察生活,就会发现数学就在我们身边。
设计意图:通过学习内容的回顾和小结,有效落实三维目标,通过对自然规律、生活中规律的欣赏,让学生进一步感受到数学就在自己的身边,有效激发学生学习数学的兴趣。
最后老师给你们留了个作业:
自己设计一组有规律的图形,并把规律圈出来。然后求出第28个是什么图形。发送邮箱:。
板书设计:
找规律
设计说明
1.创设情境,激发学生的求知欲。
《数学课程标准》中指出:“课堂教学应激发学生的学习兴趣,调动学生的积极性。”本节教学设计创设了“警犬利用嗅觉检查物品”的情境,引导学生提出问题并列式计算,自主探究求积的近似数的方法。通过讨论、反馈、评价、更正错误,提升学生的认知能力,完成对新知的学习,同时渗透人类与动物和谐相处的思想教育。
2.设计多层练习,巩固知识,发展智力。
通过练习不仅可以加深学生对求积的近似数的方法的理解和掌握,增强学生应用知识解决问题的自主性,还能促进学生思维的内化,提升迁移、类推和解决问题的能力。本教学设计在“巩固应用”这一环节中设计形式多样的练习,巩固所学知识,发展了学生的技能,进一步开发了学生的智力。
课前准备
教师准备 PPT课件
学生准备 搜集嗅觉灵敏的动物信息
教学过程
⊙复习旧知,导入新课
1.按要求用“四舍五入”法求出每个小数的近似数。(课件出示)
保留整数
保留一位小数
保留两位小数
4.076
1.517
6.7523
2.揭题:在实际生活中,有时计算结果不需要保留很多的小数位数,今天我们就来学习如何求积的近似数。(板书课题)
设计意图:由于求积的近似数所用的方法同求一个小数的近似数的方法完全相同,因此在教学新知前,组织学生复习、练习,回忆求一个小数的近似数的方法,目的是为学生自主探索求积的近似数做准备。
⊙创设情境,探究新知
1.创设故事情境。
师:大家知道哪种动物的嗅觉特别灵敏吗?(狗)人们利用狗的这一特点把它们训练成警犬。(课件出示情境图)看,警犬正帮警察叔叔检查物品呢!警犬靠着它灵敏的嗅觉不仅能捕捉到作案人的气息,还能寻找失物和毒品。你想知道狗的嗅觉细胞有多少个吗?请看下面这组数据。(课件出示教材11页例6)
2.收集数学信息。
从图中你发现了哪些数学信息?
(要求学生认真观察画面,找出数学信息并指名汇报)
3.指导学生列式。
师:要求狗约有多少亿个嗅觉细胞,应该怎样列式?
预设 生:求狗的嗅觉细胞的个数就是求0.049亿的45倍是多少,用乘法计算,列式为0.049×45。
4.小组合作探究。
师:(课件出示题目要求“得数保留一位小数”)得数保留一位小数,就是求积的近似数。生活中有许多小数并不一定都要知道它的准确值,只要知道它的近似数就可以了。根据求一个小数的近似数的经验,你觉得应该怎样求这个积的近似数呢?下面以小组为单位,先把自己的想法说一说,再试着算一算。
(学生在小组内交流自己的想法后独立进行计算,计算后交流、订正结果,并推选一名同学上前板演)
5.指名板演交流。
学生板演,并说说自己是如何按照题目要求求2.205的近似数的。
6.尝试总结方法。
师:你能结合例题说说截取积的近似数的方法吗?
(学生交流后汇报)
预设生:求积的近似数,先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出结果,用“≈”连接。
设计说明
本节课旨在通过丰富的情境创设和动手操作活动,引导学生发现整体“1”是由若干个几分之一组成的,理解分数单位的意义。在学生原有认知水平的基础上,促进学生对分数单位意义的理解,让学生在活动中有所发现。
针对上述内容,本节课教学在设计上主要有以下两大特点:
1.通过动手量一量纸条的活动,进一步感知分数的意义。
《数学课程标准》中强调:“数学学习就是要让学生经历数学知识的再创造过程,学会数学思考。”因此,本节课在教学中采取直观、形象的教学手段,创设如“量一量”“填一填”等活动,在学生亲身经历了知识的形成过程后发现问题,并引导学生在测量中进一步感知分数的意义。
2.借助填写分数墙活动,概括、总结分数单位的意义。
参与数学活动是学生积累基本活动经验的重要方式,也是训练学生数学思维的最好手段。本节课的教学设计为学生提供了充分参与数学活动的机会,使学生在活动中理解分数单位的意义,同时培养学生数学思维的品质。
课前准备
教师准备PPT课件 纸条
学生准备教材附页3中图1的纸条 剪刀
教学过程
⊙复习旧知,引入新课
师:你能用分数分别表示这三个圆的涂色部分吗?(课件出示图形:)
预设 生:这三个圆的涂色部分用分数表示分别是:xx。
师:结合图形观察这三个分数,你发现了什么?
预设 生1:比大。
生2:里有2个。
师:同学们通过观察发现了这么多有关分数的知识,看来,我们对分数进行深入研究就会发现更多有趣的知识。今天,我们就继续认识分数。[板书课题:分数的再认识(二)]
设计意图:通过复习旧知,了解学生对分数意义的掌握程度,同时为研究分数单位做好铺垫。
⊙合作交流,探究新知
1.学生活动:用附页3中图1的纸条,量一量数学书的长和宽各是多少。
(1)请学生剪下附页3中图1的纸条,分别量一量数学书的长和宽,并记录测量的结果。
思考:如果能正好量完,是几个纸条长?如果不能正好量完,该怎样表示长度?
(2)交流测量结果。
预设 生:数学书的宽正好是3个纸条长,数学书的长不够5个纸条长,比4个纸条长多一些。
(3)组织学生讨论探究。
提问:数学书的长不够一个纸条长的部分怎么量,请大家讨论一下。
学生讨论,尝试操作,师巡视指导并提示:要量剩下的部分,应该把纸条变短。
(4)交流测量方法和结果。
预设 生:我先把纸条对折去量,还是不能正好量完,再把纸条对折一次,正好量完。
师:剩下的这部分相当于纸条的几分之几呢?
预设 生:大致相当于纸条的四分之一。
设计意图:通过学生动手活动,激发学生探究的欲望,从而使学生在实际操作中发现分数单位的产生是实际测量的需要。
2.自主探究:把整体“1”平均分成不同的份数,明确整体“1”可以由若干个几分之一累加而成。
(1)看分数墙,填一填,想一想,你发现了什么?
(把分数墙填写完整,并画出来)
(2)在小组内互相交流自己的想法。