八年级上册第十一章数学教学教案

| 收藏本文 下载本文 作者:瘦弱的狗屁

下面是小编帮大家整理的八年级上册第十一章数学教学教案(共含20篇),欢迎阅读,希望大家能够喜欢。同时,但愿您也能像本文投稿人“瘦弱的狗屁”一样,积极向本站投稿分享好文章。

八年级上册第十一章数学教学教案

篇1:八年级上册第十一章数学教学教案

教学目标

①通过实例理解全等形的概念和特征,并能识别图形的全等.

②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.

③能运用性质进行简单的推理和计算,解决一些实际问题.

④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.

教学重点与难点

重点:全等三角形的有关概念和性质.

难点:理解全等三角形边、角之间的对应关系.

教学设计

问题情境

1.展现生活中的大量图片.

片断1:图案.

片断2:教科书第90页的3幅图案.

2.学生讨论:

(1)从上面的片断中你有什么感受?

(2)你能再举出生活中的一些类似例子吗?

学生分组讨论、思考探究

1.上面这些图形有什么共同的特征?

2.有人用“全等形”一词描述上面的图形,你认为这个词是什么含义? 教师明晰。建立模型

1.给出“全等形”、“全等三角形”的定义.

2.列举反例,强调定义的条件.

3.提出问题“你能构造一对全等三角形”吗?你是如何构造的,与同伴交流.

4.全等三角形的对应元素及性质:教师结合手中的教具说明对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等(教师启发学生根据“重合”来说明道理).

解析、应用与拓广

1.以图13.1-1中的两个三角形为例,介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法,并说出图13.1—2、图13.1—3的对应顶点、对应边、对应角,写出相等的边和角(解释“≌”的含义和读法,并强调对应顶点写在对应位置上).

2.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.

3.学生运用自制的两块全等三角形模板,用平移、翻折、旋转等方法,先独立拼出教科书92~93页中的5个图形,说出它们的对应顶点、对应边、对应角,再与同伴交流,你还能拼出其他图形吗?

拓展与延伸

1.例1 已知△ABC≌△DFE,∠A=96°,∠B=25°,DF=10cm.求∠E的度数及AB的长.

随堂练习

注:检查学生对本节课的掌握情况.

1.全等用符号__表示.读作__.

2.△ABC全等于三角形△DEF,用式子表示为__.

3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与__是对应角;AB与__是对应边,BC与__是对应边,AC与__是对应边.

4.判断题:

(1)全等三角形的对应边相等,对应角相等. ( )

(2)全等三角形的周长相等. ( )

(3)面积相等的三角形是全等三角形. ( )

(4)全等三角形的面积相等. ( )

5.找出由七巧板拼成的图案中的全等三角形.

小结提高

1.回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识? 注:对于学生的发言,教师要给予肯定的评价.

2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;

3.在运用全等三角形的定义和性质时应注意规范书写格式.

布置作业

1.必做题:教科书92页习题13.1第1题,第2题,第3题.

2.选做题:教科书92页习题13.1第4题.

教学后记

篇2:八年级上册第十一章数学教学教案

教学目标

①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.

③通过对问题的共同探讨,培养学生的协作精神.

教学重点与难点

重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等. 难点:指导学生分析问题,寻找判定三角形全等的条件.

教学设计

创设情境,引入课题

出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

教师点拨,学生边学边画图,再让学生把画好的ΔA'B'C'剪下,放在ΔABC上,观察这两个三角形是否全等.

交流对话,探求新知

根据前面的操作,鼓励学生用自己的语言来总结规律:

两边和它们的夹角对应相等的两个三角形全等.(SAS)

注:培养学生的概括能力和语言表达能力.

补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边. 注:归纳、分析得到的规律,使学生有更深刻的认识和理解.

应用新知,体验成功

出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?

再次探究,释解疑惑

出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?

让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.

教师演示:方法(一)教科书98页图13.2-7.

方法(二)通过画图,让学生更直观地获得结论.

巩固练习

教科书第99页,练习(1)(2).

小结

1.判定三角形全等的方法;

2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.

注:通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构,形成解题经验.

作业

1.必做题:教科书第104页,习题13.2第3、4题.

2.选做题:教科书第105页第10题.

教学后记

篇3:八年级上册第十一章数学教学教案

教学目标

①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性.

③通过对问题的共同探讨,培养学生的协作精神.

教学重点与难点

重点:指导学生分析问题,寻找判定三角形全等的条件.

难点:三角形全等条件的探索过程.

教学设计

复习过程,引入新知

带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.

创设情境,提出问题

根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.

建立模型,探索发现

出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C'满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?

让学生按照下面给出的条件作出三角形.

(1)三角形的两个角分别是30°、50°.

(2)三角形的两条边分别是4 cm,6 cm.

(3)三角形的一个角为30°,一条边为3 cm.

再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.

出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?

通过交流,归纳得出结论:

三边对应相等的两个三角形全等(SSS).

同时也明确判定三角形全等需要三个条件.

应用新知,体验成功

实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.

让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的实例.

注:让学生体验数学在生活中应用的广泛性.

给出例1,如图△ABC是一个钢架,AB=AC,AD是连接点A

与BC中点D的支架,求证△ABD≌△ACD.

巩固练习

教科书第96页的思考及练习.

反思小结

掌握数学规律.

再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验. 作业

1.必做题:教科书第103页习题13.2中的第1、2题.

2.选做题:教科书第104页第9题.

教学后记

篇4:人教版八年级数学上册第十一章优秀教案

教学目标

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.

4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣. 重点、难点

重点:

1.对三角形有关概念的了解,能用符号语言表示三条形.

2.能从图中识别三角形.

3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.

难点:

1.在具体的图形中不重复,且不遗漏地识别所有三角形.

2.用三角形三边不等关系判定三条线段可否组成三角形.

教学过程

一、看一看

1.投影:图形见章前P1图.

教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构„„的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中. 学生活动:(1)交流在日常生活中所看到的三角形.

(2)选派代表说明三角形的存在于我们的生活之中.

(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)

(2)观察发现,以上的图,哪些是三角形?

(3)描述三角形的特点:

板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.

教师提问:上述对三角形的描述中你认为有几个部分要引起重视.

学生回答:

a.不在一直线上的三条线段.

b.首尾顺次相接.

二、读一读

指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题:

(1)什么叫三角形?

(2)三角形有几条边?有几个内角?有几个顶点?

(3)三角形ABC用符号表示________.

(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.

三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.

三、做一做

画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?

同学们在画图计算的过程中,展开议论,并指定回答以上问题:

(1)小虫从B出发沿三角形的边爬到C有如下几条路线.

a.从B→C

b.从B→A→C

(2)从B沿边BC到C的路线长为BC的长.

从B沿边BA到A,从A沿边C到C的路线长为BA+AC.

经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.

四、议一议

1.在同一个三角形中,任意两边之和与第三边有什么关系?

2.在同一个三角形中,任意两边之差与第三边有什么关系?

3.三角形三边有怎样的不等关系?

通过动手实验同学们可以得到哪些结论?

三角形的任意两边之和大于第三边;任意两边之差小于第三边.

五、想一想

三角形按边分可以,分成几类?

六、练一练

有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?

分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合

三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构

成一个三角形.

(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.

错导:∵3cm+6cm>2cm

∴用3cm、6cm、2cm的木棒可以构成一个三角形.

错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.

七、忆一忆

今天我们学了哪些内容:

1.三角形的有关概念(边、角、顶点)

篇5:人教版八年级数学上册第十一章优秀教案

教学目标

1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.

2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.

重点、难点

重点:

1.了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.

2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.

难点:

1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.

2.钝角三角形高的画法.

3.不同的三角形三条高的位置关系.

教学过程

一、看一看

把下面图表投影出来:

1.指导学生阅读课本P71-72的课文.

2.仔细观察投影表中的内容,并回答下面问题.

(1)什么叫三角形的高?三角形的高与垂线有何区别和联系? 三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.

(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?

三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.

(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?

三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.

3.三角形的高、中线和角平分线是代表线段还是代表射线或直线?

三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.

二、做一做

1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?

三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.

2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?

三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.

3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?

无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.

三、议一议

通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.

四、练习

1.课本P5,练习1.2.

2.画钝角三角形的三条高.

五、作业

1.P8-P9习题11.1第 3.4.8

篇6:八年级上册第十一章数学教案

[教学目标]

〔知识与技能〕

1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;

2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]

一、情景导入

三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

二、三角形及有关概念 AC不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 (1)注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.

三、三角形三边的不等关系

探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC>BC ①;因为两点之间线段最短。 同样地有 AC+BC>AB ②

AB+BC>AC ③

由式子①②③我们可以知道什么?

三角形的任意两边之和大于第三边.

四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:

三角形  直角三角形   斜三角形  锐角三角形 

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;

有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。

显然,等边三角形是特殊的等腰三角形。

按边分类: 底角 底角 底边 三角形  不等边三角形 等腰三角形  底和腰不等的等腰三角形

等边三角形

五、例题

例 用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x㎝,则腰长2 x㎝。

x+2x+2x=18

解得x=3.6

所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.

(2)如果长为4㎝的边为底边,设腰长为x㎝,则

4+2x=18

解得x=7

如果长为4㎝的边为腰,设底边长为x㎝,则

2×4+x=18

解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。 由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习

课本4頁练习1、2题。

六、课堂小结

1、三角形及有关概念;

2、三角形的分类;

3、三角形三边的不等关系及应用。

作业:

课本8頁1、2、6;

八年级上册第十一章数学教案第二节:三角形的高、中线与角平分线

〔教学目标〕

〔知识与技能〕

1、经历画图的过程,认识三角形的高、中线与角平分线;

2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯 〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点. A〔教学过程〕 A

一、导入新课

我们已经知道什么是三角形,也学过三角形的高。

三角形的主要线段除高外,还有中线和角平分线值得我们BDCBCD研究。

二、三角形的高

请你在图中画出△ABC的一条高并说说你画法。

从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC边上的高,看看有什么发现?

三角形的三条高相交于一点。

如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?

现在我们来画钝角三角形三边上的高,如图。

E C

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线

如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC的另两条边上的中线,看看有什么发现?

三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。 四、三角形的角平分线

如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。

A

思考:三角形的角平分线与角的平分线是一样的吗? 三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? BCD三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习

课本5頁练习1、2题。 六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。 七作业:

课本8頁3、4; 八、教后记

篇7:八年级上册第十一章数学教案

[教学目标]

〔知识与技能〕

1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。 〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯 〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点] 三角形稳定性及应用。

[教学过程]

一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么

要这样做呢?

二、三角形的稳定性

„实验‟1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会

改变吗?

(2)

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论?

三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产

和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用

四边形的不稳定性。

你还能举出一些例子吗?

四、课堂练习

1、下列图形中具有稳定性的是( )

A正方形 B长方形 C直角三角形 D平行四边形

2、要使下列木架稳定各至少需要多少根木棍?

篇8:八年级华师大上册第十一章数学教案

【教学目标】:以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。

【教学重、难点】:重点:了解平方根的概念,求某些非负数的平方根。

难点:平方根的意义

【教具应用】:老师:三角板、小黑板

学生:

【教学过程】:

一、提出问题,创设情境。

问题1、要剪出一块面积为25cm²的正方形纸片,纸片的边长应是多少?

问题2、已知圆的面积是16πcm²,求圆的半径长。

要想解决这些问题,就来学习本节内容

二、自学提纲:

1、你能解决上面两个问题吗?这两个问题的实质是什么?

2、看第2页,知道什么是一个数的平方根吗?

3、25的平方根只有5吗?为什么?

4、会求110的平方根吗?试一试

5、-4有平方根吗?为什么?

6、想一想,你是用什么运算来检验或寻找一个数的平方根?

7、根据平方根的定义你能指出正数、0、负数的平方根的特征吗?

8、什么叫开平方?

三、能力、知识、提高

同学们展示自学结果,老师点拔

① 情境中的两个问题的实质是已知某数的平方,要求这个数。

② 概括:如果一个数的平方等于a,那么这个数叫做a的平方根。

如5²=25,(-5)²=25 ∴25的平方根有两个:5和-5

③ 根据平方根的意义,可以利用平方来检验或寻找一个数的平方根。

④ 任何数的平方都不等于-4,所以-4没有平方根。

⑤ 0的平方等于0。所以0只有一个平方根为0。

⑥ 概括:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。 ⑦ 求一个数a(a≥0)的平方根的运算,叫做开平方。

四、知识应用

1、求下列各数的平方根

① 49 ②1.69 ③

2、将下列各数开平方

①1 ②0.09 ③(-

五、测评

1、说出下列各数的平方根

①81 ②0.25 ③

2、求未知数x的值

①(3x)²=16 ②(2x -1)²=9

六、小结: 16 81 ④(-0.2)² 3)² 54 125

1、什么叫做平方根?

2、一个正数的平方根有几个?零的平根有几个?负数的平方根呢?

3、平方和开平方运算有什么区别和联系?

区别:①平方运算中,已知的是底数和指数,求的是幂。而在开平方运算中,已知的是指数和幂,求的是底。

②平方运算中的底数可以是任意数,平方的结果是唯一的,在开平方运算中,开方的数的结果不一定是唯一的。

联系:二者互为逆运算。

七、布置作业

1、P7第1题

2、(选做)已知:x是49的平方根,y是1的平方根,求:

①2x+1 ②(x+y)²

篇9:八年级华师大上册第十一章数学教案

八年级华师大上册第十一章数学教案第三节:平方根与立方根(3)

【教学目标】:1、了解立方根和开立方的概念。

2、会用根号表示一个数的立方根,掌握开立方运算。

3、培养学生用类比思想求立方根的运算能力。

4、会用计算器求一个数的立方根。

【教学重、难点】:重点:立方根的概念和性质

难点:会求一个数的立方根

【教具应用】:教师:计算器、小黑板

学生:计算器

【教学过程】

一、提出问题,创设情境导课

问题:现有一只体积为216cm³正方体纸盒,它的每一条棱长是多少?

二、自学提纲

1、类比平方根的概念,这个实际问题,能抽象出什么数学概念?在数学上提出怎样的计算问题?

2、2的立方等于多少?是否有其它的数,它的立方也是8?

3、-3的立方等于多少?是否有其它的数,它的立方也是-27?

4、27的立方根是什么?-27的立方根呢?0的立方根呢?

5、类比平方根的性质,你能总结出立方根的性质吗?

6、什么叫开立方?开立方与 是互逆运算。求一个数的立方根可以通过 运算来求。

7、一个数的平方根和一个数的立方根,有什么相同点和不同点?

三、能力、知识、提高

同学们展示自学结果,教师点拔

1、概括:如果一个数的立方根a,那么这个数叫做a的立方根,记作

方数,3称根指数。

2、立方根的性质:正数有一个立方根,是正数

负数有一个立方根,是负数

0有一个立方根,是0

3、平立根与立方根的区别和联系

联系:①0的平方根、立方根都是0

②平方根、立方根都是开方的结果。

区别:①定义不同

②个数不同

③表示方法不同,正数a的平方根为±

④被开方数的取值范围不同

四、知识应用

1、求下列各数的立方根

①a,读作“三次根号a”a称为被开a,a的立方根表示为a 827 ②-115 ③-0.008

2、用计算器求下列各数的立方根(看P6的按键顺序)

①1231 ②-343 ③9.263

3、求下列各式的值

①8 ②0.064 ③³

五、测评

1、求下列各数的立方根

①511 ②-0.008 ③-64 125

2、用计算器计算 ① ②.576 ③.691(精确到0.01)

3、判断正误

①-4没有立方根 ②1的立方根是±1

③-5的立方根是-5 ④64的算术平方根是8

六、小结:1、立方根的定义、性质

2、完成下表

七、布置作业:1、P7 2 3(2)

2、立方根等于本身的数有

平方根等于本身的数有

- 64的立方根是

3、x为何值时,

X为何值时,x3+x有意义? x3+x有意义?

篇10:八年级华师大上册第十一章数学教案

【教学目标】:1、引导学生建立清晰的概念系统,在学生正确理解平方根概念的意义和平方根的表示方法基础上,讨论算术平方根的概念及其表示方法。

2、会用计算器求一个非负数的算术平方根

【教学重、难点】:重点:了解数的算术平方根的概念,会用“

难点:对”表示一个数的平方根和算术平方根。 a的理解。特别是a的取值的理解。

【教具应用】:教师:计算器、小黑板

学生:计算器

【教学过程】:

一、提出问题,创设情境

1、在(-5)²,-5²,5²中,哪个有平方根?平方根是多少?哪个没有平方根?为什么?

2、说出平方根的概念和性质。

3、0.49的平方根怎样用符号表示呢?又有新的命名吗?带着这些问题,走进我们今天的课堂。

二、自学提纲

1、9的平方根是 ,9的正的平方根是 ,9=3表示的意义是什么?

2、什么样的数存在平方根?什么样的平方根是这个数的算术平方根?分别用什么符号表示?

3、-a”存在的条件是什么? “a”的结果是正数、0、还是负数? 0=0正确吗? a2有意义吗?(a)2呢?a呢? 的意义是什么?它等于什么

三 、能力、知识、提高

同学们展示自学结果,教师点拔

1、概括:正数a的正的平方根叫做a的算术平方根,记为

即-a,读作“a的算术平方根”。另一个平方根是它的相反数,a。因此正数a的平方根可以记作±a,a称为被开方数。 注意:①这里的

②这里“a不仅表示开平方运算,而且表示正值的平方根。 a”中有双“正”字,即被开方数为正,结果的值为正。

2、0的平方根也叫0的算术平方根,因此0的算术平方根是0。即

a的算术平方根,其结果为非负数。

3、=0。从以上可知:当a是正数或0时,a表示a2总有意义,(a)2也总有意义,但a存在有条件限制,即-a≥0,∴a≤0

四、知识应用

1、求110的算术平方根

2、求下列各数的平方根和算术平方根

①36 ②2.89 ③

3、求下列各式的值 ①79 ②±4223 36

4、用计算器求下列各数的算术平方根(看第4页的按键顺序)

①529 ②1125 ③44.81

五、测评问题

1、下列各式中叫些有意义?哪些无意义? -0.3 0.3 (0.3)2 (0.3)2

1

256 2、求下列各数的平方根和算术平方根 111 0.25 400

3、求下列各式的值,并说明它们各表示的意义 - ± 0

5、用计算器计算 ①

六、小结

①如何表示一个正数的平方根?举例说明

②什么叫做算术平方根? ③式子

七、布置作业

1、P7 3(1) 4

2、(选做)若某数的平方根为2a+3和a-15,求这个数。

3、若 ②27.8784 ③4.225(精确到0.01) x1中的x应满足什么条件? x3+y4=0,求(x-y)

篇11:八年级上数学第十一章知识点

八年级上数学第十一章知识点

三角形

一、知识框架:

二、知识概念:

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13.公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线。

学好初中数学的方法

多做练习题

要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

课后总结和反思

在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

cos是什么意思

cos是余弦函数的表达式。余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π,在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。

篇12:八年级数学上册第十四章《函数》教学反思

人教版八年级数学上册第十四章《函数》教学反思

今天下午在我任教的一班实施了《函数》这一节内容的教学。一堂40分钟的课下来,原本以为可以轻松搞定的课,结果却问题多多,有很多东西需要自己静下心来思考,现将我实施完本课教学后的思考内容整理如下:

《14.1.2函数》的教学是一堂概念课的教学,我的基本思路还是通过从实际问题出发,得出函数关系式后,引导学生观察、发现、总结,进而归纳得出函数这一概念,讲解时,重点引导学生掌握函数的两个显著特征,即一是存在两个变量,二是当其中一个变量确定为一个数值时,另一个变量会有唯一确定的数值与之对应。通过不断强调“变化与对应”这两个关键点,让学生发现函数的本质属性。引导学生学习了解了函数的概念之后,再通过教材中的例题进行巩固,接着是分了两个层次进行加强训练,最后进行课堂小结。

本课教学的困难之处,我觉得一是如何将抽象性的函数概念清晰明了的讲授给学生,二是教材内容中出现的大量实际问题该如何科学恰当的处理。我的选择是先回顾有关“变量和常量”这两个概念,然后通过之前“14.1.1变量”这一节所提到的前三个问题入手,得出关系式,填写好当其中一个变量确定后所对应的数值(每个问题做了一份表格),完成这三个问题后,让学生来归纳其特征,从而过渡到学习“函数”的概念这一教学环节上来。从实施的情况来看,效果不理想,主要原因是在这三个问题的处理上时间稍显过长,最重要的一点是在引导学生去思考这些问题的特征时,语言不够简练恰当,使得学生在这里的思考陷入困境,课堂氛围陷入僵局。由于自己的引导预设的原因,学生做出了非本人预想的回答,打乱了我的教学思路,致使后面的教学受到了影响。具体情况是这样的,当我提问学生“观察上述问题,每个问题中有几个变量?同一个问题中的变量之间有什么关系?”时,随口说了一句“请同学们观察这三个问题,有何共同点?”在我的引导下,学生说出了两个我想要的答案——一是都存在两个变量,二是当其中一个变量取了一个确定的数值时,另一个变量会有唯一确定的值与之对应,接下来又有学生说出了第三个,那就是这三个问题中都存在常量,这一回答针对课件中我所设计的那三个问题是没有错的,于是我便将其写在了黑板上,但是我们仔细研究初中教材中给出的“函数”定义后会发现,存在常量并非函数关系中必须存在的本质属性,而在课堂中,我并没有跟学生解释清楚这个问题,可能致使部分学生在认识“函数”这一问题上今后还会出现偏差。

事实上,课本教材中的“心电图与人口调查”这两个实际例子,也是函数关系的一种体现,同时也可以作为论述“存在常量,并非函数关系中必须存在的因素”,因为在这两个例子中,一个是讲述心脏产生的生物电的电流与时间这两个变量之间的'关系,另一个是年份与人口数这两个变量之间的关系,中间并未提到常量。(当然,对于这两个例子,是否存在常量,我觉得还值得大家进一步思考与讨论,我只是从函数的表达方式上观察得出的)。学习“函数”概念的关键是在“变化与对应”,且是当自变量的值确定时,有唯一确定的函数值与之相对应,我觉得在这里我讲的还不够好,还不够清楚,前面的例子的引入并没有起到我预想的效果,这值得我认真的思考——该如何有效的利用这些实际问题来进行“函数”的概念教学。

在本次教学中,对于“人口调查”这一问题的讲解上也有问题。我原本想让学生观察找到其与之前的问题的共同特征——“存在两个变量”和“对于其中一个变量去确定的值后,另一个变量也有唯一确定的值与之对应”,但事实证明,学生很难找到其与前面三个问题的共性,当我提出让学生观察并发现后,部分学生的思维被

发散了很多,导致思考漫无边际,而又有一些学生思维陷入了困局,不知从何回答。课后,我也思考了一番,不如讲完前三个实际问题后,便给出“函数”的概念,再给出“心电图”和“人口调查”这两个例子,来印证和说明这也是一种函数关系,进而再讲解,函数的三种表示方法——解析法,图像法和列表法。这样的处理会不会效果更好呢?星期五可以再做新的尝试。

在本次教学中,我讲课本97页的探究内容去掉了,课后许多老师提出这个内容不应删掉,我也觉得如此,这个探究内容确实能够很好的去印证“函数”概念中所蕴含的“变化”与“对应”这两个关键点,是对“函数”概念理解的很好的活动。

在例题的处理上,由于前面的时间安排的不好,使得这道题讲解的也有些匆忙。函数时研究运动变化的重要数学模型,它来源于现实生活又服务于客观实际,所以我明白教材中将实际问题贯穿始终的用意,但是这也无疑给这堂课的教学添加了难度。整体来说学生对于应用题的处理是存在一定困难的,再加上本课又加上了抽象的数学概念,从概念的获得到概念的应用,这个跨度也是有些大的,所以需要教师对于这一过程非常熟悉,非常明确本课的教学目标和重点,采取有效的教学手段,才能引导学生不会在学习中分不清方向,抓不住重点。

课后的分层练习,由于讲到这里课堂剩余的时间已不多了,所以处理的很快,学生完全是被动学习,效果应该也是打了不少折扣。

此外,本课缺少情景引入,教学目标不够清晰,教学语言不精练简介,板书不够有条理,也是本课教学存在的问题。还有在《学习卡》与课件的设计上也存在一些需要改进的地方,在这两天务必要重新设计规划了。

“上好一堂课真不容易,上好每堂课更不容易”,这次教学许多老师提了很好的意见,尤其是黄玲老师,一针见血的指出,尽管我参加过许多大赛并获过不少奖,但是这一两年感觉已经到了一个“瓶颈”,就本课的教学来说,施教者对于概念的特质还抓得不够精准,让听课者感觉有点乱,说明今后还需要加强理论上的学习,需要认真研读教材,扎扎实实的去备课。我觉得说的很对,这也反映出我在平时工作上存在的问题。这些年来,科组的老师们对我的帮助很大,尤其是科组长陈笑联老师和黄玲老师,在这里由衷的表示感谢。对个人而言,虽然参加了东莞市第一期的初中数学教师骨干培训班的培训,但从未将“骨干”跟自己划等号;尽管现在进入了“名师工作室”学习,但从不敢以“名师”自居,我的教学生涯还有很长的一段路要走,在教学教研的路上,我觉得自己还是刚刚入门,还需要不断学习,自己主动的去参加这么多的培训,其实也是想通过培训来鞭策和要求自己,不让自己松懈。没做老师之前,母亲就曾告诫我,做教师这一行是“良心活儿”,要对得起学生,对得起良心。这句话我时刻都记着,我会努力去做的。

篇13:八年级数学上册教案

初二数学上册教案:与三角形有关的线段

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题1 回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

设计意图:三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

(1)以AB为一边的三角形有哪些?

(2)以∠D为一个内角的三角形有哪些?

(3)以E为一个顶点的三角形有哪些?

(4)说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延申,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

三角形按边分类:

设计意图:通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.

5.联系实际,突破难点

情境引入:如图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?

各条路线的长一样吗?

师生活动:引导学生讨论分析,得到两条路线:

(1)B直接到C即BC;

(2)先由B到A再到C即BA+AC.

显然,路线(1)中的BC要短一些,即:BC

最后,师生共同得到:

BC

即:三角形的两边之和大于第三边.

设计意图:根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对 “三角形两边之和大于第三边”的理解.

6. 应用巩固

例 用一条长为18cm的细绳围成一个等腰三角形.

(1)如果腰长是底边的2倍,那么各边的长是多少?

(2)能围成有一边的长是4cm的等腰三角形吗?为什么?

解:(1)设底边长为xcm,则腰长为2xcm.

x+2x+2x=18.

解得x=3.6.

所以,三边长分别为3.6cm,7.2cm,7.2cm.

(2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.

如果4cm长的边为底边,设腰长为xcm,

则 4+2x=18

解得x=7.

如果4cm长的边为腰,设底边长为xcm,

则 2×4+x=18

解得x=10.

因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.

由以上讨论可知,可以围成底边长是4cm的等腰三角形.

引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.

设计意图:设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.

补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.

师生活动:结合具体图形,教师引导学生分析,活学活用.

7.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.

(2)三角形按边的分类.

(3)三角形三边之间的关系.

师生活动:教师引导,学生小结.

设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

8.布置作业:

教科书第8页第1,2题.

初二数学上册教案:乘法公式

教学设计思想

因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.

首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

教学目标

知识与技能:

1.熟记完全平方公式,并能说出它的几何背景

2.会运用公式进行简单的乘法运算

3.提高进一步地掌握、灵活运用公式的能力

过程与方法:

1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力

2.通过对公式的推导及理解,养成思维严密的习惯

情感态度价值观:

感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣

二、学法引导

1.教学方法:学生探索与老师讲解相结合.

重点•难点及解决办法

重点:会推导完全平方公式,并能运用公式进行简单的计算

难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.

课时安排

1课时.

教具学具准备

投影仪或电脑、自制胶片.

教学过程设计

看谁算得快

(1) (x+2)(x+2)

(2) (1+3a)(1+3a)

(3) (-x+5y)(-x+5y)

(4) (-m-n)(-m-n)

相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?

引例:计算 ,

学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.

证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2

公式特征:

(1)积为二次三项式;

(2)积中两项为两数的平方和;

(3)另一项是两数积的2倍,且与乘式中间的符号相同.

(4)公式中的字母a,b可以表示数,单项式和多项式

1.首平方,尾平方,积的2倍放中央.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,

(1)图A中正方形的面积为 ,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为 .

(2)图B中,正方形的面积为 ,

Ⅲ的面积为 ,

Ⅰ、Ⅱ、Ⅳ的面积和为 ,

用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 .

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.

3.例题

(1)引例:计算

教师讲解:在 中,把x看成a,把3y看成b,则 就可用完全平方公式来计算,即

【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例2 运用完全平方公式计算:(2) ;(3)

学生活动:学生独立在练习本上尝试解题,2个学生板演.

【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

(3)(补充)例3 你觉得怎样做简单:

① 102²

② 99²

思考

(a+b)²与(-a-b)²相等吗?

(a-b)²与(b-a)²相等吗?

(a-b)²与a²-b²相等吗?

为什么?

4.尝试反馈,巩固知识

练习一(P90)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

运用完全平方公式计算:

(l) (2) (3) (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

7. 总结、扩展

⑴学习了完全平方公式.

⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

8.布置作业

P91 A组 1,4,5

篇14:八年级数学上册教案

一、创设情景,明确目标

多媒体展示:内角三兄弟之争

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分.

三、合作探究,达成目标

三角形的内角和

活动一:见教材P11“探究”.

展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

小组讨论:有没有不同的证明方法?

反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

针对训练:见《学生用书》相应部分

三角形内角和定理的应用

活动二:见教材P12例1

展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

小组讨论:三角形的内角和在解题时,如何灵活应用?

反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

1.本节学习的数学知识是:三角形的内角和是180°.

2.三角形内角和定理的证明思路是什么?

3.数学思想是转化、数形结合.

《三角形综合应用》精讲精练

1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

A.1个 B.2个 C.3个 D.4个

2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

A.5 B.6 C.7 D.10

3.下列五种说法:①三角形的三个内角中至少有两个锐角;

②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

《11.2与三角形有关的角》同步测试

4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

篇15:八年级数学上册教案

一、创设情景,明确目标

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

多边形的定义及有关概念

活动一:阅读教材P19。

展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分

多边形的对角线

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分

正多边形的有关概念

活动二:阅读教材P20。

展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标

1、下列叙述正确的是(D)

A、每条边都相等的多边形是正多边形

B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

C、每个角都相等的多边形叫正多边形

D、每条边、每个角都相等的多边形叫正多边形

2、小学学过的下列图形中不可能是正多边形的是(D)

A、三角形B。正方形C。四边形D。梯形

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

篇16:八年级数学上册教案

教学目标

1.认识变量、常量.

2.学会用含一个变量的代数式表示另一个变量.

教学重点

1.认识变量、常量.

2.用式子表示变量间关系.

教学难点

用含有一个变量的式子表示另一个变量.

教学过程

Ⅰ.提出问题,创设情境

情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.

1.请同学们根据题意填写下表:

t/时 1 2 3 4 5

s/千米

2.在以上这个过程中,变化的量是________.变变化的量是__________.

3.试用含t的式子表示s.

Ⅱ.导入新课

首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.

从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.

这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.

[活动一]

1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?

2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?

引导学生通过合理、正确的思维方法探索出变化规律.

结论:

1.早场电影票房收入:150×10=1500(元)

日场电影票房收入:205×10=20xx(元)

晚场电影票房收入:310×10=3100(元)

关系式:y=10x

2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)

挂2kg重物时弹簧长度:2×0.5+10=11(cm)

挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)

关系式:L=0.5m+10

通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.

[活动二]

1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?

2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?

结论:

1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2r=

面积为10cm2的圆半径r= ≈1.78(cm)

面积为20cm2的圆半径r= ≈2.52(cm)

关系式:r=

2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.

若长为1cm,则宽为5-1=4(cm)

据矩形面积公式:S=1×4=4(cm2)

若长为2cm,则宽为5-2=3(cm)

面积S=2×(5-2)=6(cm2)

… …

若长为xcm,则宽为5-x(cm)

面积S=x?(5-x)=5x-x2(cm2)

从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.

Ⅲ.随堂练习

1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.

2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.

解:1.买1支铅笔价值1×0.2=0.2(元)

买2支铅笔价值2×0.2=0.4(元)

……

买x支铅笔价值x×0.2=0.2x(元)

所以y=0.2x

其中单价0.2元/支是常量,总价y元与支数x是变量.

2.根据三角形面积公式可知:

当高h为1cm时,面积S= ×5×1=2.5cm2

当高h为2cm时,面积S= ×5×2=5cm2

… …

当高为hcm,面积S= ×5×h=2.5hcm2

篇17:八年级数学上册教案

Ⅰ.教学任务分析

教学目标

知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.

过程与能力 培养学生数学建模的能力.

情感与态度 实例引入,激发学生学习数学的兴趣.

教学重点 探索正比例函数的性质.

教学难点 从实际问题情境中建立正比例函数的数学模型.

Ⅱ.教学过程设计

问题及师生行为 设计意图

一、创设问题,激发兴趣

【问题1】将下列问题中的变量用函数表示出来:

(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;

(2)三角形的底为10cm,其面积y随高x的变化而变化;

(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化.

解:(1)y=4x;(2)y=5x;(3)y=3x.

教师提出问题,学生独立思考并回答问题.

教师点评,并且提醒学生注意用x表示y. 问题引入,为新知作好铺垫.

二、诱导参与,探究新知

思考:观察函数关系式:

① y=4x; ② y=5x; ③ y=3x.

这些函数有什么特点?

都是y等于一个常量与x的乘积.

教师提出问题,并引导学生观察:

学生观察思考并回答问题.

三、引导归纳,提炼新知

(板书)正比例函数的概念:

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.

注意:x 的取值范围是全体实数.

由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.

通过板书,突出本节课的重点.

四、指导应用,发展能力

1.下列函数是否是正比例函数?比例系数是多少?

(1) 是,比例系数k=8. (2) 不是.

(3) 是,比例系数k= . (4) 不是.

填空

1.若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.

题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范.

在本次活动中,教师要关注:

学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.

五、探究新知

例1 画出正比例函数y=x的图象.

解:(1)列表:

x --- -2 -1 0 1 2 ---

y --- -2 -1 0 1 2 ---

画出函数y=x的图象.

(1)列表: (2)描点: (3)连线:

想一想

除了用描点法外,还有其他简单的方法画正比例函数图象吗?

根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.

同理,画出y=-x的图象.

师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限.

函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限.

归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线.

当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;

当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.

由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

六、指导应用,发展能力

例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点.

相同点:图象经过一、三象限,从左向右上升;

不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近.

例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点.

相同点:图象经过二、四象限,从左向右下降;

不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近.

在y=kx中,k的绝对值越大,函数图象越靠近y轴.

篇18:八年级数学上册教案

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1.请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

篇19:八年级数学上册教案

教学目标

知识与能力:

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四边形的另一种判定方法,并学会简单运用.

过程与方法:

1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.

2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感、态度与价值观:

通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学方法启发诱导式 教具 三角尺

教学重点平行四边形判定方法的探究、运用.

教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用

教学过程:

第一环节 复习引入:

问题1:

1.平行四边形的定义是什么?它有什么作用?

2.判定四边形是平行四边形的方法有哪些?

(1)两组对边分别平行的四边形是平行四边形.

(2)一组对边平行且相等的四边形是平行四边形.

(3)两条对角线互相平分的四边形是平行四边形.

第二环节 探索活动

活动:

工具:两对长度分别相等的木条。

动手:能否在平面内用这四根笔摆成一个平行四边形?

思考1.1:你能说明你所摆出的四边形是平行四边形吗?

已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.

思考1.2:以上活动事实,能用文字语言表达吗?

学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:

(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.

(2)通过观察、实验、猜想到:

两组对边分别相等的四边形是平行四边形.

在此活动中,教师应重点关注:

(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;

(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;

(3)学生能否通过独立思考、小组合作得出正确的证明思路.

第三环节 巩固练习

例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?

八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?

随堂练习

1.判断下列说法是否正确

(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

(2)两组对角都相等的四边形是平行四边形 ( )

(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?

3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

4.如图:AD是ΔABC的边BC边上的中线.

(1)画图:延长AD到点E,使DE=AD,连接BE,CE;

(2)判断四边形ABEC的形状,并说明理由.

第四环节 小结:

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)平行四边形判定的应用 集备意见 个案补充

篇20:新人教版八年级下册第十一章物理功教案

新人教版八年级下册第十一章物理功教案:功率

一、教学目标

知识与技能

1、知道功率的概念及其物理意义

2、知道功率的公式、单位,

3、会计算简单的功率问题。并对人和一些事物的功率数值有具体的概念, 过程与方法

1、从身边生产和生活实际中,认识做功不但有多少之分,而且有快慢之别,

2、通过类比把速度的知识迁移到比较做功快慢上来。

情感、态度与价值观

通过实验探究,培养发散思维能力、实事求是的科学态度,体会研究物理问题的方法。

二、教学重点、难点

教学重点:知道功率的概念、理解功率的物理意义和计算公式

教学难点:用功率公式解决实际问题、设计实验估测人的功率

三、教具

体重计、秒表、刻度尺

四、学习过程

(一)、导入课题:

师:小明的教室在五楼,通常他上楼需1.5分钟,有一次,他跑步只用了40秒,这两种情况也何异同?

生:他做的功______,所用的时间 ,他做功快慢_______(选填是否相同)。

师:这说明了做功不但有多少的问题,还有快慢的问题,那么如何比较做功的快慢呢?想一想能否与比较物体运动的快慢方法作类比,

生:比较物体运动快慢一般有两种方法:一种是相同路程比_______,一般赛跑都是用这种方法(裁判员的方法);还可用另一种方法,是相同时间比______(观众的方法),物理学上常采用后一种方法。

师:同样比较做功的快慢也可依此采用两种方法。

生:做功相同的情况下比 ,或者相同时间的情况下比 。师:物理学中,则采用后一种方法来表示做功的快慢,并引入了一个新的物理量-----功率。

(二)、新课学习:

一)、功率:

师:请同学们参照书本P65认识功率,

生:完成下列填空

1、定义:_ 叫功率。

2、计算公式:W=,t=

3_(符号表示___),人们它叫做___,简称__,符号表示___。 在工程技术中常用单位是____、_____。它们之间的进率是 。 练一练:(1)单位换算:5W=___J/s。3Kw=___w, 0.5MW=____W。

师:讨论:1、功率大的物体一定做功多。

2、功率大的物体一定花的时间少。

3、做功的多的物体一定功率大。

4、功率大物体一定做功快。

5、做功多的物体一定做功快。

生:功率是表示________________物理量,功率大表示物体做功,功率小 表示物体做功 。功率不是表示做功的多少。所以功与功率是完全不同的两个物理量。

生:练习,

1、如前面题目,若小明的体重为500N,每层楼高为3m,则他两次上楼所做的功分别是________和________,两次做功的功率分别是_______ 和 ________。

2、两台起重机的功率之比是1:3,如果它们完成的功相同,则它们完成这些功所用的时间之比是 ;在相同时间里完成的功之比为_________。

师:阅读课本P66第二自然段,了解一些物体的功率。

二)、估测上楼的功率:

师:上学时我们都要从底楼登上三楼,在此过程中谁的功率最大呢?下面就来研究。 生:思考

1、猜一猜:我们班上哪个同学上楼的功率大?你做出猜想时考虑了哪些因素?

2想一想:如何比较同学上楼的功率?可以有哪些不同的方案?

如果要求估测出功率的大小,需要测量哪些数据?应用什么测量工具?并设计出表格

师:实验操作如下,请一个同学从一楼登到三楼,测出这个同学的质量m,量出楼的高度(一楼到三楼)h,记下这个同学两次登楼所用的时间t,并把有关数据填在下表中。

算一算:根据P算出登楼时的功率。 ttt

生:思考,如何估测跳台阶或引体向上时人的功率吗?应如何测量呢?

(三)、小结:通过这节课的学习,你学到了什么?你还有哪些疑难问题?有什么体会?(请你写下来)

(四)、作业:1、完成课本P66 1、2、3、4.

2、功率的另一种形式表示。我们可通过以下例子来分析:一辆汽车做匀速直线运动。

sW牵引力F、速率v和功率P之间有什么关系?用公式P=、W=Fs、v=推导出来,tt

P=_____(注:把功率公式中W和t替换掉,最终用F和V来表示功率)。从此公式来看,在功率保持一定,加大物体的速度必定会使动力(拉力)减少。在分析一些有关运动的物体(包括机器)的功率时,应用此变形式比较简捷。

数学八年级上册教学教案

八年级数学上册教案

八年级数学上册教案

八年级数学教学教案

人教版八年级数学上册教案

人教版八年级数学上册教案

数学八年级上册教学设计

八年级上册期中数学教学反思

八年级上册数学教学设计人教版

数学七年级上册教学教案

八年级上册第十一章数学教学教案(通用20篇)

欢迎下载DOC格式的八年级上册第十一章数学教学教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档