下面是小编整理的八年级下册数学教案人教版勾股定理逆定理(共含16篇),希望能帮助到大家!同时,但愿您也能像本文投稿人“开心汤达人”一样,积极向本站投稿分享好文章。
1.使学生理解并能证明勾股定理的逆定理.
2.能应用逆定理判断一个三角形是否是直角三角形.
3.使学生进一步加深性质定理与判定定理之间关系的认识.
4.使学生初步了解,用代数计算方法证明几何问题这一数学思想方法对开阔思路,提高能力有很大意义.
1.重点:勾股定理逆定理的应用.
2.难点:勾股定理逆定理的证明.
3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.
(一)引入新课
和其它定理一样,勾股定理也有逆命题,但能否成为逆定理呢?下面就此问题加以研究,看能否证出逆命题是正确的.
(二)讲解新课
1.先让学生写出逆命题,并结合图形,用几何语言写出已知,求证.
2.其次,要向学生进行讲解,指出直接证明这个三角形中有一个角为直角很困难,所以我们采用先做一个“两个直角边分别等于已知三角中较短的两边的直角三角形”,然后证明所作的直角三角形与已知三角形全等,即可知已知三角形是直角三角形.
作三角形时,注意所用条件,不可用已知三角形的三边.
具体证明全等方法是用计算方法证的.此后可把逆命题,改写成逆定理.因此得出勾股定理与其逆定理关系又是一对互逆定理.前者是rt△的性质定理,后者是rt△的判定定理,特别是判定定理又给我们提供了除定义外的又一个判定直角三角形的方法.应该提醒学生,注意随时总结,以使新旧知识互相结合,扩大证明有关问题的思路.另外,先要把任意三角形中最长的边c的平方,与其它两边a、b的平方和作比较就可直接得出下列结论:
最后要再次强调勾股定理与逆定理在以后的学习中的重要地位,不可忽视.
例 已知在rt△abc中,三条边长分别为a、b、c,是a=n2-1,b=2n,c=n2+1(n>1).
求证:∠c=90°.
分析:由于是已知三边求证是直角三角形,所以很快想到勾股定理的过定理.但要注意,用两个较短边的平方和与最长边的平方作比较,否则不会得到正确结论,直角三角形斜边永远大于直角边.具体计算证明可由学生自己完成.
勾股数的定义:
能够成为直角三角形三条边长的三个正整数叫做勾股数.
找勾股数可用试验的方法.历史上人们已经找到许多符合勾股定理的公式,用这些公式找勾股数很容易,如上面例题就是其中一种.只要用大于1的自然数代入公式即可.下面两个公式也可以用来找勾股数,此处不防先作为课后练习,可让学生证后再用.
①2n2+2n,2n+1,2n2+2n+1(n是自然数)是直角三角形的三条边长.
②m2-n2,m2+n2,2mn(m>n,m、n是自然数)是直角三角形的三条边长.
可以让学生记住一些常见的勾股数,如:3、4、5;8、6、10;15、18、17…
(三)练习
教材p.105中1、2、3.
(四)作业
教材p.107中9、10;p.108中3、4.
教学目标:
一知识技能
1.理解勾股定理的逆定理的证明方法和证明过程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;
二数学思考
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度
1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
教学重难点:
一重点:勾股定理的.逆定理及其应用.
二难点:勾股定理的逆定理的证明.
教学方法
启发引导分组讨论合作交流等。
教学媒体
多媒体课件演示。
教学过程:
一复习孕新,引入课题
问题:
(1) 勾股定理的内容是什么?
(2) 求以线段ab为直角边的直角三角形的斜边c的长:
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分别以上述abc为边的三角形的形状会是什么样的呢?
二动手实践,检验推测
1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.
教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.
2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
三探索归纳,证明猜想
问题
1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?
3.如图18.2-2,若△ABC的三边长
满足
,试证明△ABC是直角三角形,请简要地写出证明过程.
教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.
四尝试运用,熟悉定理
问题
1例1:判断由线段
组成的三角形是不是直角三角形:
(1)
(2)
2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?
教师巡视,了解学生对知识的掌握情况.
特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题
五类比模仿,巩固新知
1.练习:练习题13.
2.思考:习题18.2第5题.
部分学生演板,剩余学生在课堂练习本上独立完成.
小结梳理,内化新知
六1.小结:教师引导学生回忆本节课所学的知识.
2.作业:
(1)必做题:习题18.2第1题(2)(4)和第3题;
(2)选做题:习题18.2第46题.
知识结构:
重点、难点分析
本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.
本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的'互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.
(3)通过实际问题的解决,培养学生的数学意识.
教学目标 :
1、知识目标:
(1)理解并会证明勾股定理的逆定理;
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数.
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征.
教学重点:勾股定理的逆定理及其应用
教学难点 :勾股定理的逆定理及其应用
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程 :
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.
(2)判定直角三角形的方法:
①角为 、②垂直、③勾股定理的逆定理
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
证明:∵
∴
∵∠C=
例2 已知:如图,四边形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积
解:连结AC
∵∠B= ,AB=3,BC=4
∴
∴AC=5
∵
∴
∴∠ACD=
例3 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形
证明:∵CD⊥AB
∴
又∵
∴
∴△ABC为直角三角形
以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.
5、布置作业 :
a、书面作业 P131#9
b、上交作业 :已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
板书设计 :
探究活动
分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?
提示:设直角三角形边长分别为
则三个半圆面积分别为
一、教学设计理念
随着社会的发展,新课程改革的不断深入,数学课已不仅是一些数学知识的学习,更重要的是体现知识的认知发展过程。教育的目的是培养具有独立思考能力、具有实践精神和创新能力的人。一堂好课应该是学生最大限度参与的课。《数学课程标准》中指出学生的数学学习应当是现实的、有意义的、富有挑战性的,内容要有利与学生主动进行观察、实验、猜想、验证、推理与交流。内容的呈现应采取不同的表达方式,以满足多样化的学习需求。数学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
二、教材、学情分析与处理
本节知识是在学生掌握了直角三角形的三个性质:直角三角形两锐角互余和30°所对的直角边等于斜边的一半以及在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°的基础上展开的。勾股定理是直角三角形的一个非常重要的性质,它揭示了一个直角三角形三边的数量关系,可解决直角三角形的许多有关的计算,是初三解直角三角形的主要依据之一,中考中的四边形和圆等综合题中也经常出现。贯穿了整个几何学习,更是数形结合的重要典范。更重要的是学生在探索定理的过程中,无论是课前准备和课上交流以及课下活动都让学生充分感受到学习、思考的重要性,与人合作的重要性以及数学在实际生活中的重要作用,是进行爱国教育的重要题材!
本节课的教育对象是初二下的学生,共性是思维活跃,参与意识较强。而且一般家庭都有电脑,对教师布置的网上作业也颇感兴趣,并能制作简单课件。形成了一定的数学学习习惯。
三、教学目标
(一)知识与技能目标:
1、掌握勾股定理及其证明
2、会利用勾股定理进行直角三角形的简单计算。
3、了解有关勾股定理的历史知识
(二)过程与方法目标
经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。
(三)情感、态度和价值观
1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。
2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。
3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。
四、教学重点、难点
本节课在教材处理上,先让学生带着三个问题预习完成网上作业,自制4个两条直角边不等的全等的直角三角形,准备一张坐标纸。从而初步了解勾股定理的历史和内容以及证法,并制作成课件或打印资料,为课上活动做了充分的准备。为突破本课重、难点起到了至关重要的作用。勾股定理这部分内容共计两课时,本节课是第一课时。教学重点定位为勾股定理的探索过程及简单应用。教学难点是勾股定理的证明。把勾股定理的应用放在第二课时进行专题训练。
五、教法、学法及教学手段
自主探索、合作交流、引导点拨
六、教学流程
(一)创设情境,引入课题。(二)自主探索,获得定理(三)独立思考,应用定理(四)畅所欲言,归纳小结。
七、教学过程设计
教学目标
掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。
教学重难点
学习重点 理解将假分数化成整数或带分数。
学习难点 掌握假分数化成整数或带分数的方法。
教学工具
PPT课件
教学过程
一、复习引入。(6分钟)
1.判断下面各数哪些是真分数,哪些是假分数。
1/7 3/2 4/9 12/47
教师根据学生的分类,把假分数取出来,让学生观察。
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。
3.揭示课题:这节课我们来一起学习把假分数化成整数或带分数。(板书课题:真分数和假分数(2))。
二、探究新知。15分钟)
教学例3。
1.把 3/3 8/4 化成整数。
(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?
(2)讨论:如何把 3/3、8/4 化成整数?
2.把 7/3 、6/5 化成带分数。
(1)提问: 7/3 、6/5 的分子不是分母的倍数,这种情况怎样转化?
(2)交流讨论方法。
(3)学生在练习本上试着把 化成带分数。
3.小结:把假分数化成整数或带分数的方法。
学案
1.根据真分数和假分数的意义进行分类,汇报交流。
2.交流假分数的分类情况。
3.明确本节课的学习内容。
1.(1)看课件,回答用3/3 、8/4 表示。
(2)同桌讨论后交流:①根据分数与除法的关系 3/3 =3÷3=1,②根据分数的意义是1,可以想 3/3 里面有3个1/3 。
2.(1)思考老师的提问。
(2)讨论后交流:① 7/3 是 6/3 和 1/3 合成的数,等于2 1/3 。②也可以用7÷3=2……1,商2是带分数的整数部分,余数1是分数部分的分子,分母不变。
(3)学生独立练习,集体订正。
3.师生共同小结。
三、巩固练习。(14分钟)
1.完成教材第54页“做一做”第2题。
2.完成教材第55页第4,第56页第6题。
四、课堂总结。(5分钟)
1.通过本节课的学习,大家学习了假分数化成整数或带分数的方法,希望同学们学以致用,体会学习数学的乐趣。
2.布置课后学习内容。
课后小结
本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。
课后习题
1.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
1.读出下面的带分数。
3 1/8读作:_____________
70 3/57读作:_____________
2 4/79读作:_____________
2.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
答案:8 15 23
3.填一填。
(1)23÷9= ( )/( )
(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )
(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。
4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)
答:张师傅做得快。
板书
真分数和假分数 (2)
假分数化成整数或带分数的方法:
用分子除以分母,
当分子是分母的倍数时,
能化成整数,商就是这个整数;
当分子不是分母的倍数时,能化成带分数,
商是带分数的整数部分,余数是分数部分的分子,分母不变。
教学目标
1.使学生理解和掌握两个数的公因数和最大公因数的概念。
2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.通过数学学习活动过程,训练学生思维的有序性和条理性。
教学重难点
最大公因数的求法。
教学工具
ppt课件
教学过程
(一)、复习旧知,为新知打好铺垫
1、师:前面,我们已经学过有关因数的知识,你能举例说一下什么叫做一个数的因数吗?(学生举例。)谁还能像刚才那位同学举例说一下?
2、理解了什么是一个数的因数,你能找出8的因数有哪些吗?(找同学回答)师:这位同学找全了吗?这位同学做到了既不重复也不遗漏。你能介绍一下你找因数的方法吗?表扬:讲的太清楚了,让我们把掌声送给这位同学。(或:思考一下,怎样找一个数的因数才能做到既不重复也不遗漏。)
哪位同学能用这样的方法找出12的因数呢?
师:看来大家对因数的知识掌握的非常的牢固,今天要学的新知识就和因数有着密切的联系。
(二)、创设情境,引导动手操作
同学们喜欢做游戏吗?下面,我们就来通过做一个小游戏来学习新知识。
1、教师出示7张数字卡片。(1、2、3、4、6、8、12)
(1)请7位同学上台任选一张卡片。记清你卡片上的数字,把你的数字卡放在胸前,面朝大家。
(2)是8的因数的请站在左边,是12的因数的请站在右边。
同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(3)同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(4))师问:你们发现了吗?
(5)师:1、2、4既是4的因数,又是12的因数,用句简单的话说:1,2,4是8和12公有的因数,8和12公有的因数叫做它们的公因数。
(6)师问:同学们观察,8和12的最大的公因数是几呢?(4)
(7)4是8和12最大的公因数,我们就把4叫做它们的最大公因数。
(8)这就是我们这节课要学习的内容《最大公因数》。
(9)板书课题:最大公因数。
(10)除了用上面这种方法表示公因数
我们还可以用前面学过的集合圈的形式表示。
(三)、合作交流、探索方法
1、小组合作:求出18和27的最大公因数。
现在,同学们知道了什么是公因数和最大公因数,那你能试着求出18和27的最大公因数吗?
合作要求:(四人一组)
(1)讨论用什么方法求出两个数的最大公因数。
(2)在答题纸上写出你们组是怎样找这两个数的最大公因数的。
2、汇报交流反馈。
方法一:现分别写出18和27的因数,再圈出公有的因数,从中找出最大公因数数。同学们真是太棒了!其他小组,还有不同的方法吗?
方法二:先找出18的因数:1,2,3,6,9,18.再看看18的因数中有哪些是27的因数,最后看哪个最大。(或者是:先找出27的因数:1,3,9,27;再看看27的因数中有哪些是18的因数,最后看哪个最大。)
方法三: 先写出18 的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18 的因数是不是27 的因数,9 是27 的因数,所以9 是18 和27 的最大公因数。
4、这些方法都属于列举法,在解决问题时你可以选择自己喜欢的方法。
5、观察两个数的公因数和它们的最大公因数,你有什么发现?(两个数的公因数也是它们最大公因数的因数。)
(四)、拓展延伸。
刚才,同学们表现得都特别的好,接下来是不是会表现的更出色呢?
老师相信,接下来你们会用自己出色的表现,证明优秀的自己!
1、求出 4和8、16和32的最大公因数 ,思考你发现了什么?
教师对学生的发现概括总结,并课件出示发现:如果较小数是较大数的因数,他们的最大公因数是较小数
2、求出 2和7、8和9的最大公因数,思考你发现了什么?
发现:如果两个数只有公因数1,它们的最大公因数就是1.
3、教师总结:通过刚才的学习我们知道了求最大公因数共有3种情况。
(3种:成倍数关系的;公因数只有1的;一般情况。)
两个数成倍数关系和公因数只有1时可以直接判断出最大公因数。一般情况的采用列举法求出最大公因数。)
(五)、巩固提高。
刚才大家不仅展现了自己的数学才能,还突显了自己的探索能力,那么,我相信老师带来的这些问题同学们就更不在话下了。
1. 填空。
(1) 10 和 15 的公因数有 _____________。
(2) 14 和 49 的公因数有 _____________。
2. 选出正确答案的编号填在横线上。
(1) 9 和 16 的最大公因数是______。
A. 1 B. 3 C. 4 D. 9
(2) 16 和 48 的最大公因数是______。
A. 4 B. 6 C. 8 D. 16
(3) 甲数是乙数的倍数,甲、乙两数的最大公因数是______。
A. 1 B. 甲数 C. 乙数 D. 甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
(1) (4) (18) (3)
五、全课总结。
师:同学们,这节课马上要结束了,能说说你们的收获吗?
同学们的收获真多,除了用我们这节课学习的列举法求两个数的最大公因数,老师这里还有两种更简便的方法求最大公因数,给大家分享一下。
一种是:分解质因数求最大公因数的方法,课件演示。
另一种是:短除法
这两种方法我们只是了解一下,在这里就不具体研究了,有兴趣的同学下课后,可以自学教材61页的这部分知识。
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m)123456789
BC长(m) 12
面积y(m2) 48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0
y=-2x2+20x (0
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
学习目标:
1、巩固对整式乘法法则的理解,会用法则进行计算
2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。
3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。
4、进一步培养学生有条理的思考和表达能力。
学习重点:整式乘法的法则运用
学习难点:整式乘法中学生思维能力的培养
学习过程
1. 学习准备
1. 你能写出整式乘法的法则吗?试一试。
2. 谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?
利用课下时间和同学交流一下,能解决吗?
2. 合作探究
1. 练习
(1)(-5a2b)(2 a2bc) (2)(- ax)( - bx3)
(3)(2x104)(6x105) (4) ( x) •2x3 •( -3x2)
2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?
3、练习
(1)(-3x)(4x2- x+1) (2)(-xy)(2x-5y-1)
(3)(2x+3) (4x+1) (4)(x+1)(x2-2x+3)
4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。
3. 自我测试
1、3x2• (-4xy) •(- xy)=
2、若(mx3)•(2xn)=-8x18,则m=
3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是
4、若m2-2m=1,则2m2-4m+的值是
5、解方程:1-(2x+1)(x-2)= x2-(3x-1)(x+3)-11
6、当(x2+mx+8)(x2-3x+n)展开后, 如果不含x2和x3的项,求(-m)3n的值.
7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=- .
8、( 北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。
9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平
方米草坪260元,则为修建该草坪需投资多少元?
一、案例背景
现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习积极性,使之主动地探索、研究,让学生都参与到课堂活动中,通过学生自我感受,培养学生观察、分析、归纳的能力,逐步提高自学能力,独立思考的能力,发现问题和解决问题的能力,逐渐养成良好的个性品质。
因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
二、案例分析
教学过程设计
(一)『情境引入』
情境一:如何计算375×2.8+375×4.9+375×2.3 ?你是怎么想的?
问题:为什么375×2.8+375×4.9+375×2.3可以写成375×(2.4+4.9+2.3)?依据是什么?
【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。
(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课内容的学习创设了良好的情绪和氛围。
情境二:分析比较
把单项式乘多项式的乘法法则
a(b+c+d)=ab+ac+ad ①
反过来,就得到
ab+ac+ad =a(b+c+d)②
思考(1)你是怎样认识①式和②式之间的关系的?
(2)②式左边的多项式的每一项有相同的因式吗?你能说出这个因式吗?
【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
(2)、本题注重培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法。
(二)『探究因式分解』
1、认识公因式
(1)、【概念1】:多项式ab+ac+ad的各项ab、ac、ad都含有相同的因式a,称为多项式各项的公因式。
(2)、议一议
下列多项式的各项是否有公因式?如果有,试找出公因式.
①多项式a2b+ab2的公因式是ab,…… 公因式是字母;
②多项式3x2-3y的公因式是3,…… 公因式是数字系数;
③多项式3x2-6x3的公因式是3x2,……公因式是数学系数与字母的乘积。
分析并猜想
确定一个多项式的公因式时,要从 和 两方面,分别进行考虑。
①如何确定公因式的数字系数?
②如何确定公因式的字母?字母的指数怎么定?
练一练:写出下列多项式各项的公因式
(1)8x-16 (2)2a2b-ab2
(3)4x2-2x (4)6m2n-4m3n3-2mn
【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能通过相互间的交流来纠正解题中的常见错误。
(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,特别是多次方及系数的公因式,要让学生注意。
(3)、找公因式的一般步骤可归纳为:一看系数 二看字母 三看指数。
2、认识因式分解
【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解。
(课本)P71练一练第1题
(1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是?
①. ab+ac+d=a(b+c)+d
②. a2-1=(a+1)(a-1)
③.(a+1)(a-1)= a2-1
(2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系?从中你得到什么启发?
【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。
(2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维能力和表达、交流能力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。
(三)『例题研究』
例1:把下列各式分解因式
(1)6a3b-9a2b2c (2)-2m3+8m2-12m
解:(1)6a3b-9a2b2c
=3a2b·2a-3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)
=3a2b(2a-3bc)(提取公因式)
(2)-2m3+8m2-12m
=-(2m·m2-2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)
=-2m(m2-4m+6)(提取公因式)
【评析】:(1)、因式分解的概念和意义需要学生多层次的感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再通过不同形式的练习增强对概念的理解例。
(2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生通过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。
(3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达能力。
本题的易错点:
(1)、漏项:提公因式后括号中的项数应与原多项式的项数一样,这样可检查是否漏项。
(2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都要变号。
(四)『巩固练习』
练一练:辨别下列因式分解的正误
(1)8a3b2-12ab4+4ab=4ab(2a2b-3b3)
(2)4x2-12x3=2x2(2-6x)
(3)a3-a2=a2(a-1)= a3-a2
解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。
(2)错误,分解因式后,括号内的多项式中仍有公因式。
(3)错误, 分解因式后,又返回到了整式的乘法。
【评析】:(1)、这些多是学生易错的,本题设置的目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。
(2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。
(3)、进行多项式分解因式时,必须把每一个因式都分解到不能分解为止。
(4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。
(五)『想一想』:
如何把多项式3a(x+y)-2b(x+y)分解因式?
解:3a(x+y)-2b(x+y)= (x+y)(3a-2b)
评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2-a)=-(a-2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。
【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
三、教学反思
1、本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等能力,发展有条理思考及语言表达能力;
2、分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生提供丰富有趣的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程;
3、在提公因式方面,学生对公因式的认识不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:(1)公因式找错;(2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中含有多项式时,漏掉系数或字母因数),导致因式分解不彻底;
4、由于在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;
因式分解是一个重点,也是一个难点,以上存在问题在以后的教学中有待进一步加强。
一、学情分析:
知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。
能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。
二、教学目标:
知识目标:1、分式的乘除运算法则
2、会进行简单的分式的乘除法运算
能力目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
情感目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
三、教学重点、难点
重点:分式乘除法的法则及应用
难点:分子、分母是多项式的分式的乘除法的运算
三、教学过程:
第一环节复习旧知识
复习小学学的分数乘除法法则,
活动目的:
复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备。
第二环节 引入新课
活动内容
你能总结分式乘除法的法则吗?与同伴交流。
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
活动目的:
让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
第三环节 知识运用
活动内容
例题1:
(1) (2) 例题2
(1) (2) 活动目的:
通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。
第四环节走进中考
(.漳州) 第五环节课时小结
活动内容:
1.分式的乘除法的法则
2.分式运算的结果通常要化成最简分式或整式.
3. 学会类比的数学方法
第六环节 当堂检测
教学目标
1、了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。
过程与方法 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
情感态度与价值观 培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义。
重点 方差产生的必要性和应用方差公式解决实际问题。掌握其求法,
难点 理解方差公式,应用方差对数据波动情况的比较、判断。
教学过程
备 注 教学设计 与 师生互动
第一步:情景创设
乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):
A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
请你算一算它们的平均数和极差。
是否由此就断定两厂生产的乒乓球直径同样标准?
今天我们一起来探索这个问题。
探索活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动
算一算
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想
你认为哪种方法更能明显反映数据的波动情况?
第二步:讲授新知:
(一)方差
定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用
来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。
意义:用来衡量一批数据的波动大小
在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定
归纳:(1)研究离散程度可用
(2)方差应用更广泛衡量一组数据的波动大小
(3)方差主要应用在平均数相等或接近时
(4)方差大波动大,方差小波动小,一般选波动小的
方差的简便公式:
推导:以3个数为例
(二)标准差:
方差的算术平方根,即④
并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.
注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
第三步:解例分析:
例1 填空题;
(1)一组数据:,,0,,1的平均数是0,则= .方差 .
(2)如果样本方差,
那么这个样本的平均数为 .样本容量为 .
(3)已知的平均数10,方差3,则的平均数为 ,方差为 .
例2 选择题:
(1)样本方差的作用是( )
A、估计总体的平均水平B、表示样本的平均水平
C、表示总体的波动大小 D、表示样本的波动大小,从而估计总体的波动大小
(2)一个样本的方差是0,若中位数是,那么它的平均数是( )
A、等于 B、不等于 C、大于 D、小于
(3)已知样本数据101,98,102,100,99,则这个样本的标准差是( )
A、0 B、1 C、D、2
(4)如果给定数组中每一个数都减去同一非零常数,则数据的( )
A、平均数改变,方差不变 B、平均数改变,方差改变
C、平均数不变,方差不变 A、平均数不变,方差改变
例3 为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm) 甲:9,10,11,12,7,13,10,8,12,8
乙:8,13,12,11,10,12,7,7,9,11
请你经过计算后回答如下问题:
(1)哪种农作物的10株苗长的比较高?
(2)哪种农作物的10株苗长的比较整齐?
P154例1
分析应注意的问题:题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
第四步:随堂练习:
1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数 1 2 3 4 5
段巍 13 14 13 12 13
金志强 10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
第五步;课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,但S S,所以确定 去参加比赛。
3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
答案:1. 6 2. >、乙;
3. =1.5、S=0.975、=1. 5、S=0.425,乙机床性能好
4. =10.9、S=0.02; =10.9、S=0.008
选择小兵参加比赛。
小结 与 课后反思:
教学内容分析:
⑴ 学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑶ 对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:
⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:
⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。
⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:
掌握正方形的性质与判定,并进行简单的推理。
难点:
探索正方形的判定,发展学生的推理能
教学方法:
类比与探究
教具准备:
可以活动的四边形模型。
教学过程:
一:复习巩固,建立联系。
【教师活动】
问题设置:①平行四边形、矩形,菱形各有哪些性质?
②( ) 的四边形是平行四边形。( )的平行四边形是矩形。( )的平行四边形是菱形。( )的四边形是矩形。( )的四边形是菱形。
【学生活动】
学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。
【教师活动】
评析学生的结果,给予表扬。
总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。
演示平行四边形变为矩形菱形的过程。
二:动手操作,探索发现。
活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?
【学生活动】
学生拿出自备矩形纸片,动手操作,不难发现它是正方形。
设置问题:①什么是正方形?
观察发现,从活动中体会。
【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。
【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。
设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?
【学生活动】
小组讨论,分组回答。
【教师活动】
总结板书:
㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。
设置问题③正方形有那些性质?
【学生活动】
小组讨论,举手抢答。
【教师活动】
表扬学生发言,板书学生发现,㈡正方形 每一条对角线平分一组对角
活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?
学生活动
折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。
教师活动
演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?
( )的菱形是正方形,( )的矩形是正方形,( )的平行四边形是正方形,( )的四边形是正方形。
学生活动
小组充分交流,表达不同的意见。
教师活动
评析活动,总结发现:
一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;
有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;
有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;
四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。
以上是正方形的`判定方法。
正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?
学生交流,感受正方形
三,应用体验,推理证明。
出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及 的度数。
方法一解:∵四边形ABCD是正方形
∴∠ABC=90°(正方形的四个角是直角)。
BC=AB=4cm(正方形的四条边相等)
∴ =45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC= = =4 cm
∵AO= AC(正方形的对角线互相平分)
∴AO= ×4 =2 cm
方法二:证明△AOB是等腰直角三角形,即可得证。
学生活动
独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。
教师活动
总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。
出示例二:在正方形ABCD中,E、F、G、H 分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?
学生活动
小组交流,分析题意,整理思路,指名口答。
教师活动
说明思路,从已知出发或者从已有的判定加以选择。
四,归纳新知,梳理知识。
这一节课你有什么收获?
学生举手谈论自己的收获。
请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。
发表评论
人教版八年级数学下册17.2 勾股定理的逆定理精品教案
教学目标
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
重难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习
1、若三角形的三边是 ⑴1、、2; ⑵; ⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个?????C.4个??????D.5个
2、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6; ⑶a=2,b=,c=4;
二、交流展示
例1(P33例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里. 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可求PR,PQ,QR;
⑷根据勾股定理 的`逆定理,求∠QPR;⑸求∠RPN。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长;
⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究
例3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
四、达标测试
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。
3.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,
则电线杆和地面是否垂直,为什么?
4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
五、教学反思
人教版八年级数学下册《勾股定理的逆定理》教学反思
一、本节课的成功之处:
本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。
例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的`关系“32+42=52”.那么围成的三角形是直角三角形.
2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。例如:命题2如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形.
如下图,欲过基线MN上的一点C作它的垂线,可由三名工人操作:一人手拿布尺或测绳的0和12尺处,固定在C点;另一人拿4尺处,把尺拉直,在MN上定出A点,再由一人拿9尺处,把尺拉直,定出B点,于是连结BC,就是MN的垂线.
建筑工人用了3,4,5作出了一个直角,能不能用其他的整数组作出直角呢?
生:可以,例如7,24,25;8,15,17等.
3、在本节教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。这是本节课的特色。
二、本节课的不足之处及改进方法:
1、本节课我没有利用多媒体辅助教学,如学习目标的发展、习题训练内容的展示、学生活动的要求、作业布置等,这些内容都是为教学服务的。如果用多媒体课件的展示,可以增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。在以后的教学中我应加强。
2、在重难点的突破上还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上。这是我在以后教学
教学目标
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
2.过程与方法目标:发展学生的分析问题能力和表达能力。经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育
教学重点
1、重点:勾股定理及其逆定理的应用
2、难点:勾股定理及其逆定理的应用
一、基础知识梳理
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定是以及它的应用.其知识结构如下:
1.勾股定理:
直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.
勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.
勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形:
,.
2.勾股定理逆定理
“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.
3.勾股定理的作用:
已知直角三角形的两边,求第三边;
勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的边,当其余两边的平方和等于边的平方时,该三角形才是直角三角形.勾股定理的逆定理也可用来证明两直线是否垂直,这一点同学
勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.
三角形的三边分别为a、b、c,其中c为边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的边.
二、考点剖析
考点一:利用勾股定理求面积
求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.
2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
考点二:在直角三角形中,已知两边求第三边
例(山东滨州)如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为( )
A.21 B.15 C.6 D.以上答案都不对
【强化训练】:1.在直角三角形中,若两直角边的长分别为5cm,7cm ,则斜边长为 .
2.(易错题、注意分类的思想)已知直角三角形的两边长为4、5,则另一条边长的平方是
3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)
考点三:应用勾股定理在等腰三角形中求底边上的高
例、(09年湖南长沙)如图1所示,等腰中,,
是底边上的高,若,求 ①AD的长;②ΔABC的面积.
考点四:应用勾股定理解决楼梯上铺地毯问题
例、(09年滨州)某楼梯的侧面视图如图3所示,其中米,,
,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为 .
分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。仔细观察图形,不难发现,所有台阶的高度之和恰好是直角三角形ABC的直角边BC的长度,所有台阶的宽度之和恰好是直角三角形ABC的直角边AC的长度,只需利用勾股定理,求得这两条线段的长即可。
考点五、利用列方程求线段的长(方程思想)
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开4米后,发现下端刚好接触地面,你能帮他算出来吗?
【强化训练】:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=4cm,BC=5cm,求CF 和EC。.
考点六:应用勾股定理解决勾股树问题
例、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中的正方形的边长为5,则正方形A,B,C,D的面积的和为
分析:勾股树问题中,处理好两个方面的问题,
一个是正方形的边长与面积的关系,另一个是正方形的面积与直角三角形直角边与斜边的关系。
考点七:判别一个三角形是否是直角三角形
例1:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有
【强化训练】:已知△ABC中,三条边长分别为a=n-1, b=2n, c=n+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.
考点八:其他图形与直角三角形
例:如图是一块地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求这块地的面积。
考点九:与展开图有关的计算
例、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
【强化训练】:如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行 cm
四、课时作业优化设计
【驻足“双基”】
1.设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.
2.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为( ).
A.6cm B.8.5cm C.cm D.cm
【提升“学力”】
3.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求DC的长.
4.如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?
5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是
6.如图:在一个高6米,长10米的楼梯表面铺地毯,
则该地毯的长度至少是 米。
【聚焦“中考”】
8.(海南省中考题)如图,铁路上A、B两点相距25km,C、D为两村庄,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?
5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是
6.如图:在一个高6米,长10米的楼梯表面铺地毯,
则该地毯的长度至少是 米。
一.定义
1.全等形:形状大小相同,能完全重合的两个图形.
2.全等三角形:能够完全重合的两个三角形.
二.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
★ 勾股定理数学教案
★ 八年级数学教案