以下是小编整理的我的问题三年级作文(共含12篇),欢迎阅读分享,希望对大家有帮助。同时,但愿您也能像本文投稿人“九霄”一样,积极向本站投稿分享好文章。
上课了,大家都回到了教室。但是,有一个我们班的矮个儿男孩立刻去上厕所,对他而言,上课铃就是上厕所铃一般,而且跑得比寝室快很多。回来后,他赶紧拿好书,天天因此被老师骂。
下课了,我和几个同学在谈论他为什么平时跑这么慢?五十米都跑十三秒多,而上课前上厕所就非常快?有的同学说他的脚一下轻一下重;有的同学说他怕老师骂他;但是我同学反驳,“那他为什么不下课时去上厕所呢?”
到现在这个问题还是未解之谜,我怎么感觉他就是一个特立独行的人。
“先有鸡!明明是先有蛋!”下课了,有两个同学在争吵。她们问我,到底是先有鸡还是先有蛋?我犹豫了一会儿,说:“应该是先有蛋吧!”那位说先有鸡的同学说:“那也是从蛋里破出来的呀!”……她们又争了起来,我听烦了,“你们去问老师吧!吵死了!”去问了老师,老师说:“我也不太清楚。”大家都失望了。
我准备回家搜百度,我相信真相只有一个。
我有许多问题。
小时候,我常问:"妈妈,世界上第一个人是谁?他从哪里来?"长大了,我查百度,却没有答案;我在图书馆里找来找去,找到了《百问百答(人体)》这本书,认真地翻看,依然没有答案。这个问题我想了很久,可怎么也想不出答案。我猜:是从天上掉下来的吗?
我还有问题:铅笔是怎么做成的?我又查百度,可是只有图片,我想百度真没用,好奇的.问题都查不到答案!我问科学老师,老师说:"把木头削细了,中间钻出洞,再把笔芯放进去就成了。"我查了书,书上也是一样的答案。问题解决了!
当然,我还有许多问题:汽车从哪来?飞机为什么会飞?月球是怎样的……
这些答案还要慢慢探索!
环境问题三年级作文
今天,我在电视上看到了一些关于环境污染的报道,十分着急,我想知道更清楚的信息,于是,我上网找资料。
我看到了关于每年人们丢弃的物品的.资料。比如牙刷,如果按每支牙刷重9.1克,三个月换一支的话,按北京人口1200万计算,全年丢掉的牙刷重是463.8吨,这还没把宾馆的一次性牙刷算在内。还有牙膏皮、肥皂盒等物品。
虽然人们有如此多的物品被丢掉,但是这些物品是可以回收的。1吨废塑料可以生产0。37~0。73吨油,这可以获得利润8000元。我想,如果我们把这些牙刷收集起来,送到废品回收站,或者我们在倒垃圾时,进行垃圾分类,这就不就可以减少浪费,对垃圾进行回收、利用了吗?这会对我们的社会带来一笔多大的财富啊!
所以,我们要从生活的点点滴滴做起,做保护环境的有心人!
知识掌握了就要运用,这是我帮助堂弟解决问题后的感叹。
今天上午,我和奶奶去堂弟家玩。堂弟张浩林在读二年级,一件事对他来说根本办不到。啥事呢?他生日时,我送了他一艘“扬威”(原称“扬帆”)号电动帆船。可是呢,不知咋了,制动的电机(俗称“马达”)坏了。我和他当时谁都不会修。后来我得知,猛烈撞击会使磁铁失去磁性,如果重新被磁化又会有磁性。而刚好电机里就有磁铁。我想,如果我用磁化的'方法,也许可以修好电机。
说干就干,我找来了“扬威”号与磁铁,在安放磁铁的地方用磁铁沿着同一方向摩擦,电机里有两块磁铁,所以我摩擦了八十几下(每边三四十下)。在这过程中,我也十分担心,要知道,把张浩林同志的东西搞坏了,他就会像“森碟”一样号啕大哭,她哭得声音可谓“不听不知道,一听吓一跳”。此时此刻,我的心理压力十分巨大。
终于做完了,我说:“张浩林,一起看马达能不能转。”
他过来了。
三、二、一
电机发出了“次次”声,我欣喜若狂,不仅心里的一块石头落地了,而且我成功的应用了所学的知识!
这个多云天的早晨,给我留下了永久的回忆和终生的启示。
归一问题三年级作文
数学是丰富的,当然数学也是奇妙的。“归一”问题十分有趣,那就让我们看看“归一”问题最有趣的.地方吧!
首先要告诉大家什么叫“归一”问题:“归一”问题是要先算出一个或一只或头条……
第六单元达标测试卷上有一题:4支钢笔24元,5支钢笔一共要多少元?12支呢?其实这种题目是要先算出1支钢笔多少元?所以24÷4=6(元),接下来6×5=30(元),算出了5支钢笔要30元,再接着6×12=72(元),算出12支钢笔一共要72元。
在生活中也有许多许多的“归一”问题。比如,王叔叔2天运了6个货物,3天一个运了几个货物?应该摆出算式6÷2×3=9(个),6÷2求出了一天运了3个货物,再3×3=9(个),所以3天一共运了9个货物。
“归一”问题真有趣!数学真会千变万化!所以,请大家学好数学吧!
三年级《重叠问题》说课稿范例
尊敬的各位领导、各位老师:大家好!
今天我说课的课题是《重叠问题》。在认真学习了《数学课程标准》,深入钻研教材,充分了解学生的基础上,我将从说教材、说学情;说目标、说模式;说方法、说设计;说板书、说得失;四大方面展开我的说课。
一、 说教材、说学情。
说教材:本节课选自青岛版六三制小学数学四年级下册第七单元智慧广场的内容,教材通过统计表的方式列出了参加小记者活动和小交警活动的名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突,借助韦恩图把两个活动小组的关系直观的表示出来,让学生初步体会集合思想,从而帮助学生找到解决问题的办法,为后继学习打下必要的基础。
说学情:我主要从知识基础和认知特点两个方面来说,知识基础方面,学生在一年级的时候就常常把1个人,2朵花,3支铅笔等用一条封闭的曲线圈起来表示,学生已经积累了一定的数学活动经验。认知特点方面,四年级的学生具有一定的观察、操作、归纳能力,并已经学会了自主探究与合作学习。
二、 说目标、说模式。
说目标:根据我对教材的理解以及对学情的分析,我将从知识技能、数学思考、问题解决、情感态度四个维度来制定本节课的教学目标。在知识与技能方面:能借助直观图,利用集合的思想方法解决简单的重叠问题。在数学思考方面:让学生经历探究的过程,在自主探索与合作交流中,体验重叠问题建模的过程。在问题解决方面:会借助集合思想,解决简单的实际问题,培养学生用不同方法解决问题的意识。在情感态度方面:体会数学与生活的密切联系,提高学习数学的兴趣。
说模式:本节课我采用的是自主合作探究的教学的模式,这一模式主要有以下4个环节:1.创设情境,导入新课。2.合作探索,学习新知3.练习巩固,形成技能4.全课总结,拓展延伸。这一模式的理论依据是,新课标指出:认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。
三、 说方法、说设计。
说方法:为了充分发挥学生在教学中的主动性和创造性,本节课我采用“先学后教”“以学定教”“顺学而导”的教学方法,让学生通过自学尝试,小组合作,在摆一摆、说一说、画一画等4一系列活动中来理解重叠的含义。
说设计:《义务教育课程标准》指出,“教学活动是师生积极参与、交往互动,共同发展的过程。”本着“以人为本、促进学生全面发展的理念”本节课我设计了以下四个教学环节,首先我说一下教学环节及时间分配:1.创设情境,导入新课(约5分钟)2.合作探索,学习新知(约20分钟)3.练习巩固,形成技能(约10分钟)4.全课总结,拓展延伸(约5分钟)。
1. 创设情境,导入新课。
“施教之功,贵在引路,妙在开窍”,要开启学生通窍之门,就要让学生先学,然后依据先学中暴露出来的问题实现以学定教。首先,我给同学们出示了希望小学四年级一班假期参加社会实践活动拍摄的照片,创设这样的情境,贵在激发学生的学习兴趣。接着,我出示了活动记录表,让学生收集数学信息,提出数学问题:参加社会实践活动的一共有多少人?绝大多数学生会根据以往的经验认为需要19人,这时,我反问:果真是19人吗?引导学生深入思考其他的可能性,我顺势出示完整参加活动的名单,学生的脑海里会跃出一个大大的问号-----过去求总数就是直接把各部分的数量加起来呀,怎么在这里行不通了呢?通过仔细观察,学生会发现有重复参加活动的,从而自然的引出本节课的`课题“重叠问题”。在这一环节,我有意识的凸显学生新旧认知间的矛盾冲突,造成了更为强烈的认知反差,这十分符合美国杜威的观点:“冲突对思想来说是一种触媒,诱发我们主动观察和修正,激励我们去创造,冲击我们像绵羊般的温顺,使我们警醒、敏锐,并动脑思考。
2. 合作探索,学习新知。
本环节是教学设计的核心环节,在本环节中,我大胆放手,适时引导,让学生合作交流,本环节我设计了以下几个教学活动。
(1)组织比赛,制造矛盾。
首先,组织同桌进行抢姓名比赛,我提前把参加社会实践活动的人名做成姓名卡片并装在信封里,同桌两人中一个负责抢小记者这10人摆好,一个负责抢小交警这9人摆好,因为同桌两人都想要“王强、李明、赵刚、张小帅”这4张姓名卡片,就引发了矛盾,我适时引导学生思考:两人都想要的4张姓名卡片放在什么位置更好,学生会想到放在中间。
(2)数形结合,说图明理。
让学生到黑板上指一指参加小记者活动的10人在哪,参加小交警活动的9人在哪?我适时引导,我们心里明白了,但是看起来好像不太清楚,引导学生用黄色粉笔圈出小记者活动的,用红色粉笔圈出小交警活动的,最终完成韦恩图的创作。此时,我出示正规的韦恩图,并介绍韦恩图的数学文化。
(3)列式计算,解决问题。
根据韦恩图,列出算式,解决重叠问题:10+9-4=15(人)。找不同方法的学生进行介绍,并解释每个数的意义。
(4)归纳总结,提炼方法。
接着,我进一步启动问题:如果老师把于平丽换成方伟,现在参加社会实践活动的一共有几人?学生根据演示:很容易列出算式10+9-5=14(人)。然后再启动问题:刚才我们研究了两种活动都参加的有4人,5人,两种活动都参加的还有可能是几人?最后,通过观察,列出了所有的算式,共同概括出解决重叠问题的方法,先求出两部分人数的总和,再减去重复的部分。
3练习巩固,形成技能。
在这个环节中,我安排了以下3个层次的练习。1.基本练习:自主练习第1题。2.变式练习:自主练习第2题。3.拓展练习:下面两只盒中可能有几种奖品?
练习是学生掌握知识,形成技能和能力,发展智力的重要方法,通过不同层次的练习,巩固强化所学的知识,拓展学生的思维空间,使不同的学生得到不同的发展。
4.全课总结,拓展延伸。
首先,让学生欣赏在生活中的重叠现象,感受重叠美。这让学生体会到重叠问题不仅仅存在于数学中,在生活中更是有很多的重叠现象,这让学生体会到数学与生活的密切联系。最后,让学生总结本节课所学内容,谈一下自己的收获。
四、 说板书、说得失。
说板书:板书设计首先是课题,主体部分是学生创作的韦恩图,这样的板书设计既突出了重点,又系统的梳理了本节课的知识,具有很强的实用性。
说得失:本节课,比较成功的地方是较好的完成了本节课的学习目标,课堂气氛比较活跃。当然,本节课还有很多不足,比如,由于时间有限,对学生的关注还不够,以及对学生的评价过于单一等。
最后,我想说:启思才是良师,作为一名数学教师,除了努力建设思维性课堂,使学生经历精彩纷呈、意蕴丰富的数学思考生活,尽情的享受数学思考带来的乐趣,我们还要巧加指引,有机拓展,使学生能瞭望乃至有机会进入更为璀璨和深邃的数学星空,让思考渐渐内化为他们的一种习惯,为促进学生的思维发展而教,我永恒的教学追求。
我的说课到此结束,感谢大家的耐心倾听,请提出宝贵意见!
一.说教材
重叠问题是属于新课标的新增设内容统计与概率范畴,教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”思想。使学生运用这些数学思想方法解决一些简单的实际问题。例一借助学生熟悉的题材,渗透集合的有关思想,并利用集合图的方式求出两个小组的总人数。
二.说学情
关于渗透集合思想的教学,在一年级的分类教学中,二年级的表内乘法和表内除法,以及三年级上册分数的初步认识就开始了,之前学生对集合这一思想有了初步的认识。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重复部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于从两个独立的集合点,再到从两个并列的集合圈引发学生的探究,更符合学生的学情。
三.说教学目标知识与技能:
初步渗透集合的数学思想,使学生感知体会集合图(韦恩图)的产生过程,会利用韦恩图来表示两个集合及它们的交集。2.培养学生的探索能力和利用集合的思想方法解决简单的实际问
过程与方法:
在观察、猜测,操作、比较、交流等数学活动中体会集合思想,经历发现问题、解决问题的过程,培养学生的问题意识和创新精神。
情感态度价值观:
培养学生善于观察、善于思考,享受数学的严谨性与科学性,体会数学与生活的密切联系,培养学生对数学的积极情感,养成良好的学习习惯,提高学习数学的兴趣。
教学重点:
学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。
教学难点:
理解集合图各部分含义并能用数学语言进行描述。
教法:
主要质疑引导
学法:
观察、猜测、操作、比较、合作交流等方法
教具:
多媒体课件学具:画图纸教学过程:
一.情境问题,导入新课
课件出示从交互式DVD教学光盘中剪辑的一小段情景录像“脑筋急转弯”,以生活中的重叠现象引导学生思考,导入新课。质疑:2+2应该等于4,怎么3张票就可以了呢?课件演示妈妈这个角色的特殊性,既是外婆的女儿又是女儿的妈妈。课件中感受集合图引入新课重叠问题。
二.引导探究,发现规律
1.课件出示例1,学生观察思考。然后出示例1的两个统计表,让学生观察,参加语文小组的有8人,数学小组的有9人,8加9等于17,可是参加这两个小组的没有17人只有14人啊,同学们跟自己的伙伴合作找找看,为什么?
2.引导学生质疑。(为什么不是8加9等于17人呢)
3.学生讨论交流,发现规律。
学生找到答案后,教师就适时引入:老师还有一种更好的方法能让我们一下子就看出那些同学既参加了语文小组又参加了数学小组,适时引导学生根据以前所学的知识韦恩图。课件出示介绍韦恩图,动画演示韦恩图的画法,课件分别介绍讲解韦恩图的各部分各表示什么,让学生充分理解中间这两椭圆相交的部分表示什么。用渐变的动画效果演示课件给学生看,然后强调既参加了语文的又参加了数学的应该放在哪里。这样学生就能一下看出原来用8加9等于17来解决这样的问题是不行的,因为这样把既参加了语文又参加数学的人数加了两次,语文加了,数学也加了,重复加了。所以要减去重复加的人数,即要用8加9等于17减去重复加了的个数3,所以是14人。还要让学生仔细观察韦恩图,还能用什么方法(强调只参加语文小组的人数有多少人,只参加数学小组的人数有多少人,既参加语文又参加数学的有多少人,5加6加3等于14人)
3.根据直观的韦恩图探讨解决实际问题的方法,要学生列式计算。(关键点――让学生找到重复的数,得出列式的规律)
三、接下来让学生回归生活,实际应用
1.课件出示练习二十四的第一题
集体解决,重点理解天鹅应放在哪个位置合适。课件出示答案,与学生共同核对。
2.课件出示练习二十四的第二题学生自己解决,集体订正。3.课件出示练习
四、再让学生拓展延伸,灵活的运用练习
课件出示一些情境问题,学生讨论交流解决。
五、课堂小结
这节课我们遇到了什么问题,你能解决了吗?(这类数学问题的根源――重复。再次课件演示韦恩图各部分的意义)
一、设计理念:
《数学课程标准》指出:数学课程要使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。《纲要》也提出:要促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。”基于以上两点,在本节课的教学设计过程中,我主要针对三年级学生的认知特点,从学生的生活经验和知识基础出发,创设学生感兴趣的问题情境,选择生活中容易理解的素材,让学生通过观察、操作、推理、交流等活动寻找解决问题的方法,初步体会集合思想。
二、教材分析:
“重叠问题”是教材专门安排来向学生介绍一种重要的数学思想方法,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即维恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材的落脚点不是掌握与集合有关的概念,也不是熟练掌握计算方法,而是让学生经历探究的过程,在解决问题的过程中理解集合思想,并获得有价值的数学活动经验,为后继学习打下必要的基础。
三、学情分析:
集合思想是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重复部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。
四、教学目标:
知识与技能:使学生学会借助维恩图,运用集合的思想方法解决较简单的重叠问题。
过程与方法:让学生经历集合图的产生过程,理解集合图的意义,初步培养学生的建模意识和用多种方法解决问题的意识。
情感态度价值观:培养学生善于观察、善于思考的学习习惯,感受到数学在现实生活中的广泛应用,并在学习过程中获得积极的情感体验。
教学重点:经历集合图的产生过程,理解集合图的意义,学生会借助维恩图,运用集合的思想方法解决简单的实际问题。
教学难点:经历集合图的产生过程,理解集合图的意义。
五、教法、学法:
教无定法,贵在得法。根据本课教学内容的特点和学生的思维特点,我主要采用的教学方法有:情境教学法、操作发现法、直观演示法。
为使学生能够有效地学习,主动的构建知识,学生的学习方法主要有:实践操作法、自主探究法和合作交流法。
六、教学过程:
(一)投石激趣,导入新课
1、脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?(妈妈的身份重叠了,所以她们只有3人,能顺利的进入电影院。)
2、引出课题并板书。
(设计意图:通过孩子们喜欢的脑筋急转弯引入,一是激发了学生的学习兴趣,鼓励猜想,引发多元思维,蕴含重复的缄默;二是从学生原有的知识点出发,初步感知重叠问题,为后面的学习做好铺垫。)
(二)深度体验,理解新知
1、做游戏。①听音乐游戏;②猜拳游戏。
2、根据以上两个信息,你能提出什么数学问题?
(设计意图:从学生身边感兴趣的游戏入手,让学生在游戏中收集信息,提出问题,在解决问题的过程中引发认知冲突,这样既让学生感觉到数学就在我的身边,解决的是我们自己遇到的实际问题,也更容易激发学生的探究欲望和学习的内动力,为下一步的自主探究做好准备。)
3、直观演示。
4、你能用画图的方法来表示一下你所看到的情形吗?
5、展示,并说明图中每一部分表示什么。
6、引出维恩图。
(设计意图:利用生活中熟悉的物品――呼啦圈,引导学生创造性思考,纠正经验偏差,让学生亲身经历维恩图的产生过程,根据自己的`体验来理解维恩图的意义,感受集合思想,在形象与现实中完成数学化的过程,形成抽象的数学认识。)
(三)联系生活,反馈练习
大显身手:(闯关游戏)
1、书本第105页第一题.
2、(不重叠问题)小雨一家去采摘。爷爷、爸爸、外公、姨妈、小雨、叔叔6人采摘了圣女果,姑姑、舅舅、外婆3人采摘了小黄瓜。采摘圣女果的和采摘小黄瓜的一共有多少人?
(重叠问题)小雨一家去采摘。爷爷、爸爸、外公、姨妈、小雨、叔叔6人采摘了圣女果,奶奶、妈妈、爸爸、爷爷、小雨5人采摘了草莓。采摘圣女果的和采摘草莓的的一共有多少人?
3、拓展:第一盒中有4种奖品,第二盒中有3种奖品,猜一猜:两盒中一共有几种奖品?(设计意图:应用练习从简单到复杂,从正向到逆向,练习一主要巩固学生对韦恩图的认识,练习二主要通过不重叠和重叠问题的正反向思维,来进一步加深对重复的理解,防止学生出现思维固化,巩固理解,合理运用。第三个拓展练习主要训练学生多元化、多角度考虑和解决问题的能力。这样有梯度的练习目的在于:让大部分孩子“吃好”,让学有余力的学生“吃饱”,从而达到不同的人在本节课上都能得到不同的发展。)
(四)回顾课堂,分享收获说说这节课你有什么收获?
(设计意图:通过小结,帮助学生梳理这一节课的知识点,并不要求学生一定要讲出学到什么知识,只要学生对今天的课有所体会,无论是有关知识点的,还是情感体验的,只要学生有所收获,不同的人在数学上得到了不同的发展这就够了。)
(五)总结延伸
(设计意图:学生带着问号进入课堂展开学习,又将带着问号走出课堂继续学习,这样的数学教学不只给学生的今天带来知识与方法,还为学生的明天撒播了智慧与希望的种子!)
【习题1】
三年级(3)班参加运动会入场式,排成每行6人,每列6人的方阵,如果要给该方阵再添加一行一列,那么需要补上多少个学生?
【答案】
【解析】需补上6×2+1=13(人)
【习题2】
在3棵树上共栖息着18只鹦鹉和14只杜鹃,每棵树上至少有4只鹦鹉和1只杜鹃。如何每棵树上的杜鹃都不会比鹦鹉多,那么一棵树上最多有( )只鸟?
【答案】
【解析】先给3可数分别配上4只鹦鹉和一只杜鹃,则这样外面哈斯有鹦鹉18-4×3=6(只),还有杜娟14-1×3=11(只).我们可以让剩下的这6只鹦鹉都栖息在一棵树上,此时这棵树最多也只能再停留(4+6)-1=9(只)杜鹃,因此一棵树上最多有4+4+6+9=20(只)鸟。
【习题3】
如果一个数的各个数位上之和是15,而且各数位上的数字不相同,那么符合条件的数最小是,是( )。
【答案】
【解析】由题意知为使数最小,则一定是两位数。两位数的两个数位的数字相加和为15,即7+8或者6+9,所以符合条件的数最小是69。要使符合条件的数尽可能大,则数位要尽可能多,又各数位上的数字都不相同,所以满足题意的数是543210。
【习题4】
一堆棋子,若排成三层的空心方阵,则余出14个,若在最外层增加一层,又不够22个,这堆棋子一共有( )个。
【答案】
【解析】最外层每边有棋子(14+22)÷4+1=10(个),因此这堆棋子一共有(10-4)×4×4=74(个)。
【习题1】
小丽因病没参加班上的考试,其他同学的平均成绩是96分,小丽补考的成绩是66分,加上小丽的成绩后,全班的平均成绩是95分,全班有( )人?
【答案】
【解析】小丽没考试前,其他同学的平均成绩是96分,可看成每个同学都考了96分;而小丽补考后,全班的平均成绩是95分,可看成每个同学都考了95分,即除小丽外,每个同学都要移走96-95=1(分)给小丽。而小丽要达到全班的平均成绩,还需要不上95-66=29(分),说明全班除小丽外还有同学29个,全班有同学29+1+30(个)。
【习题2】
喜羊羊和美羊羊一共买了36个包子,路上被灰太狼抢走了4个,喜羊羊比美羊羊多吃了6个,最后包子没有剩余,那么美羊羊吃了( )个包子。
【答案】
【解析】美羊羊吃了【(36-4)-6】÷2=13(个)。
【习题3】
青松学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,五年级分得( )本书。
【答案】
【解析】三个年级总和为99本,五年级最少,四年级比五年级多5本,三年级比四年级多2本,所以三年级比五年级多5+2=7(本),把三年级拿掉7本,四年级拿掉5本,都变得和五年级一样多了,所以五年级为:(99-7-5)÷3=29(本)。
【习题4】
五个同学期末考试数学成绩平均分是85分,而其中三个同学的平均成绩为83分,另外两个同学的平均成绩是( )分。
【答案】
【解析】另外两个同学的平均成绩是(85×5-83×3)÷2=88分。
【习题1】
甲桶有油25千克,乙桶有油17千克,乙桶倒入( )千克油给甲桶后,甲桶的油是乙桶的5倍。
【答案】
【解析】油是从乙桶倒入甲桶中,不管怎么倒,最后油的总量不会变,两桶油的总重量仍为25+17=2(千克),因此倒完后乙桶有油42÷(5+1)=7(千克),顾乙桶往甲桶倒了17-7=10(千克)。
【习题2】
甲仓和乙仓各存粮若干吨,如果从甲仓取出10吨粮食放入乙仓,那么甲、乙两仓存粮吨数同样多;如果从乙仓取出8吨粮食放入甲仓,那么甲仓粮食的吨数是乙仓的3倍。乙仓原来存粮食( )吨。
【答案】
【解析】因为甲仓给乙仓10吨两仓相等,所以甲仓比乙仓多10×2=20(吨),当乙仓给甲仓8吨时,甲仓比乙仓多20+8×2=36(吨),正好是3倍关系,所以乙仓后来有:36÷(3-1)=18(吨),乙仓原来有18+8=26(吨)。
【习题3】
农场里种的桃树比梨树多270棵,桃树的棵树比梨树的棵树的6倍多20棵,农场里种的桃树有( )棵。
【答案】
【解析】梨树少,把梨树看成一份,桃树就是比6份还多20棵,比梨树的5份还多20,所以梨树有:(270-20)÷(6-1)=50(棵),桃树有270-50=220(棵)。
【习题4】
三个饲养场里共养290头牛,第二饲养场的牛是第一饲养场的2倍,第三饲养场养的牛是第一饲养场的5倍少30头,第三饲养场养了( )头牛。
【答案】
【解析】第一饲养场养的牛最少,故将第一饲养场养的牛的数量看成1份数,则第二饲养场有2份,第三饲养场比5份少30,给第三饲养场补上30,刚刚好变成5份,此时三个饲养场一共有1+2+5=8(份),一共有290+30=320(只),每份有320÷8=40(份),则第三饲养场养牛40×5-30=170(头)。
三年级还原问题教案
教前分析:
1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。
2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。
3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。
教学目标:
1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。
2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。
3、情感目标:培养学生保护环境的意识。
教学要点:
1、重点:理解种树棵树与间隔数之间的关系。
2、难点:灵活应用发现的规律解决一些相关的实际问题。
学习方法:
动手操作,合作交流
教学具准备:
课件、剪纸(小路、小树、房子)、板书用的字条
教学设计:
课前谈话:
人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。
一、创设情境,导入新课
师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。
两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?
[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]
师:同学们真聪明。
师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。
请同学们伸出你的左手张开五指,数数手指之间有几个空?
生答:4个,这个空我们在数学中把它叫做间隔。
师:老师要考考同学们的眼力。四根手指之间有几个间隔?
生答3个
师:两根手指有几个间隔?
生答:1
师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。
师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!
师:你有一双善于发现的眼睛。
师:老师也收集了一些,请看大屏幕。
[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]
师:在数学中,把和间隔有关的问题称为植树问题。
师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?
二、探究新知
光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!
[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]
一)动手设计并交流
1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?
请你说说看。
生答:长20米的小路,一边、每隔5米
2、我们的小路有几边呀!这条路的全长20米,
每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。
3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!
同学们敢于猜想就向成功迈出了一大步。
4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。
刚才我们才想出这么多到底哪个答案是正确的呢?
下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。
要求:
1、用一条线段代表20米的小路。
用最直观、最简洁的图形表示树,把你们的想法动手画一画。
2、再试一试把你的想法通过算式表示出来。
3、想一想间隔的个数和树的棵数有什么关系?
同学们动手画一画,看一看到底需要多少棵?
[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]
画完以后观察一下树的棵数与间隔数有什么关系?
2、交流展示设计方案
哪个小组想展示一下你们的合作成果?
二)探究两端都栽、一端不栽和两端不栽
师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。
[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]
师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。
1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!
间隔数+1=棵数
棵数-1=间隔数
归纳:先求:总长÷间隔长=间隔数
再求棵数=间隔数+1
同学们的发现太了不起了!
2、第二种设计方案谁想给它起个名字?
生答:一端不栽或只栽一端
名字起的很有特点。
我们再来观察棵数和间隔数之间有什么关系?
谁想第一个说?生答:观察真仔细。老师给你点个赞!
3、这个咱一起给它起个名字吧!
这时候棵数和间隔数之间有什么关系?
师:你的发现太有价值啦!
看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。
学生展示总结发现
两端都栽:棵数=间隔数+1
两端不栽:棵数=间隔数—1
只栽一端:棵数=间隔数
为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。
4、植树问题好解决
知道间隔是关键
两端都栽间加1
两端不栽间减1
只栽一端与间同
[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]
运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。
三、巩固练习
一)准备好接受挑战了吗?同学们请看题
1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?
师:真是会思考的孩子。
2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)
师:这道题我们首先看属于哪种情况?
生:两端都不栽,间隔数-1=棵数
师:你是个会学习的孩子,表现棒极了!
3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。
为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?
首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。
老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数
师:同学们很会思考啊!
4、拓展延伸
刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:
把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?
在解决这个问题时我们可以借助线段图。把答案写练习本上。
四、课堂小结
同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?
生活中处处有数学,希望同学们做生活中的有心人。
[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]
五、课后作业:
孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?
★ 我喜欢三年级作文
★ 我的三年级作文
★ 我家乡三年级作文
★ 我能行三年级作文