圆周率的故事体会

| 收藏本文 下载本文 作者:凌夜

下面是小编帮大家整理的圆周率的故事体会(共含8篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“凌夜”一样,积极向本站投稿分享好文章。

圆周率的故事体会

篇1:关于圆周率和名人故事

祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

【祖冲之和圆周率的故事】

祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以“径一周三”做为圆周率,这就是“古率”.后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在 3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”.

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:“幂势既同,则积不容异.”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖原理”.

[关于圆周率和名人故事]

篇2:圆周率怎么求

我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的`计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

篇3:圆周率是多少

圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。

圆周率用希腊字母π表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的'积。,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。

篇4:圆周率小学作文

圆周率小学作文

圆周率 文化路一小二一班 张湛伯 数学中有一个神秘的数—“л ”(3。1415926),它是由圆的周长除以直径得来的,也是应用最广泛的数之一。 最早,古埃及人推断л是3。16左右,在中国,晋朝数学家刘徽算出小数点后两位,为3。14。两百年后,祖冲之算出七位数的л:3。1415926,还准确地列出他的分数的近似值。

被称之为“祖率”。17世纪俄国数学家鲁道夫将л推算到小数点后35位,在他的墓碑上就有这个数。 在人类漫长的计算л的.过程中,有一段小插曲:美国有一个人将它推算到小数点后400余位,但是却算错了,因为7的出现次数竟比4的出现次数多一倍,后来人们才发现在100余位时有一个数应该是7,他错写成了4,才导致4和7的比例不平衡,要知道那时没有计算机,他用了两年时间才算出来这个错误的л。 光阴似箭,20世纪,人们终于有了计算机!于是计算进入了飞快的发展过程,50年代有人算出了一万余位的л,60年代居然有人计算出了百万余位的л ,80、90年代,是计算最快的时期,已经算到了4。8亿位。л是一个无限不循环小数,况且更高功率的计算机还在实验过程,,所以4。8亿位的记录没有再更变。

篇5:圆周率日是什么意思

3月14日是圆周率日的正式日子,从圆周率常用的近似值3.14而来。美国麻省理工学院首先倡议将每年3月14日定为圆周率日,寓意3·14——圆周率的近似值。20__年,美国众议院正式通过这项提议。此后很多国家也接受3月14日为圆周率日。

圆周率日通常是在下午1时59分庆祝,有时甚至精确到26秒,以象征圆周率的8位近似值3.1415926。而一些认真的人则会选择凌晨1时59分庆祝,因为下午1时59分按24小时制应记作13时59分。

虽然这个节的“粉丝”数量不多,庆祝方式却五花八门。当天全球各地的一些大学数学系都要开派对,学生们七嘴八舌地讨论圆周率在人们日常生活中的意义,吃着各式各样的派,玩一种发音和“圆周率”英文单词相近的彩罐游戏,喝一种名字中含有“派”的鸡尾酒。美国麻省理工学院甚至常在这一天向学生发录取通知书。

世界上第一个将圆周率值计算到小数第7位的科学家,就是中国的数学家祖冲之。遗憾的是,我国大学纪念圆周率日的活动还不多。

“终极”圆周率日是1592年3月14日上午6时54分。这时间以美国式记法是3/14/1592 6:54,对应了圆周率的十位近似值3.141592654。

圆周率由来

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率。16,英国威廉。奥托兰特首先使用π表示圆周率,因为π是希腊之“圆周”的第一个字母,而δ是“直径”的第一个字母,当δ=1时,圆周率为π。17英国的琼斯首先使用π。1737年欧拉在其著作中使用π。后来被数学家广泛接受,一直没用至今。

π是一个非常重要的常数。一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志。”古今中外很多数学家都孜孜不倦地寻求过π值的计算方法。

公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π

会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416。 公元200年间,我国数学家刘徽提供了求圆周率的科学方法-割圆术,体现了极限观点。刘徽与阿基米德的方法有所不同,他只取“内接”不取“外切”。利用圆面积不等式推出结果,起到了事半功倍的效果。而后,祖冲之在圆周率的计算上取得了世界领先地位,求得“约率” 和“密率” (又称祖率)得到3.1415926<π<3.1415927。可惜,祖冲之的计算方法后来失传了。人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜。

15世纪,伊斯兰的数学家阿尔。卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录。

1579年法国韦达发现了关系式,首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式。

1650年瓦里斯把π表示成元穷乘积的形式

稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单。π值的计算方法的最大突破是找到了它的反正切函数表达式。

1671年,苏格兰数学家格列哥里发现了

1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法。

1777年法国数学家蒲丰提出他的著名的投针问题。依靠它,可以用概率方法得到 的过似值。假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为,针马平行线中任意一条相交的次数为,则有,很多人做过实验,19,有人投针3408次得出π3.1415926,如果取,则该式化简为1794年勒让德证明了π是无理数,即不可能用两个整数的比表示。

1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根。

本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破。目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字。

人们试图从统计上获悉π的各位数字是否有某种规律。竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……

圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。

圆周率日的发展过程

根据历史记载,目前为止最大型的以圆周率为主题的庆祝活动是在旧金山科学博物馆举办的,而该活动是旧金山科学博物馆一名物理学家组织。在当天,他带着博物馆的全体员工和各界人士一起参观博物馆纪念碑,同时一起分享关于圆周率的知识,而之后旧金山科学博物馆为了继承这一优良传统,于是将每年的这一天确定为圆周率日。美国麻省理工学院首次倡议,将3月14日定为国家性质的圆周率日,并于20__年通过决议。由于圆周率的定义简单,并且在数学公式之中是随处可见的表现,因此在如今流行文化之中的出现频率以及社会地位远远高于数学之中的其他常数。

在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为(约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。

公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。

祖冲之的圆周率,保持了一千多年的世界记录。终于在15,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他16去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。

篇6:圆周率兀是有理数吗

无理数概念

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的`无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

有理数概念

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

篇7:祖冲之圆周率第几位

祖冲之:

祖冲之(429年—5),字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的`探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。

由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。

篇8:圆周率的记忆方法

先把300位兀值抄录如下:

3.14159265358979323846

26433832795028841971

69399375105820974944

59230781640628620899

86280348253421170679

82148086513282306647

09384460955058223172

53594081284811174502

84102701938521105559

64462294895493038196

44288109756659334461

28475648233786783165

27120190914564856692

34603486104543266482

13393607260249141273

我们把300位兀值,每20位划分为一组,则300/20=15组。把每组数字两两划分成一段,转换成谐音编程,再选用一首诗作为联想的工具,即用“词句—数字联想法”和“直接串连联想法”组合起来记忆。

我们选用贺知章的“回乡偶书”——诗作为“词句”,全诗如下:少小离家老大回,乡音无该鬓毛衰。儿童相见不相识,笑问客从何处来。

圆周率怎么求

生活的圆周率作文

《圆周率的历史》教学设计

祖冲之圆周率精确计算到第几位

狼和鹿的故事体会

猜想与验证圆周率的发现教学设计

体会

从背圆周率中获得的启示作文450字

必得体会

学生体会

圆周率的故事体会(共8篇)

欢迎下载DOC格式的圆周率的故事体会,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

相关文章

猜你喜欢

NEW
点击下载本文文档