以下是小编收集整理的一种能跨变压器台区的电力远程抄表系统(共含8篇),欢迎阅读与借鉴。同时,但愿您也能像本文投稿人“小熊柚子”一样,积极向本站投稿分享好文章。
一种能跨变压器台区的电力远程抄表系统
摘要:采用过零调制技术,利用数字差分、匹配滤波、纠错编码方法处理接收数据。系统具有较强的抗干扰能力,可实现跨配电变压器台区的远距离抄表,适合中国电网特点。关键词:自动抄表 跨台区 过零调制
电力系统自动抄表是电能营运部门用电管理自动化的重要手段。电力线网络是一个广泛存在的网络,利用它作为质传输配用电数据是非常方便的。跨变压器台区电力远程抄表系统采用工频过零调制、匹配滤波、纠错编码技术,利用现有10kV/220V配电网实现无中继、无桥接设备、跨变压器台区、在不同电压等级之间的远程自动抄表。这种抄表系统是一种不同于传统电力线载波抄表的新型技术,它不存在配电网载波抄表中的多径干扰与通信盲点问题,调制信号的频率仅为几百赫兹,可以随电网远距离跨变压器台区传输。
目前,电力系统自动抄表主要方式有:485总线、无线、红外、普通电力载波、扩频电力载波、零相超窄带(TURTLE)、超窄带极低频(UNB)及工频过零调制(PFC)跨变压器台区方式等。其中,工频过零调制远程抄表以其独特的信号传输原理,可以完成以配电网络为信号传输媒介,跨变压器台区远程自动抄表。这种抄表系统的最大特点是:系统实施简单,信号抗干扰能力强,可实现跨配电变压器的远距离数据传输[1]。
1 系统组成
图1所示为跨变压器台区远程自动抄表系统方框图。该自动抄表系统由系统主站与采集模块两部分组成。系统主站位于二次变电所,完成远方采集模块的电能表数据抄收,并能上传数据至用电管理部门。采集模块位于用户电能表,负责电能表脉冲数的累计,能按主站命令通过电力线网络上传数据。这种抄表系统以配电网10kV及220V电力线路为通信介质,在用户变压器附近不需要增加任何附加设备,对配电网络没有特殊的要求,既适合架空电缆,也可用于地下线路。
跨变压器台区自动抄表系统以半双工方式工作,信号分为下行信号与上行信号两部分。下行信号为电压调制方式,以电压过零点附件电压微弱畸变来表示信息,传输方向从系统主站到远端采集模块,代表系统主站的抄表命令;上行信号为电流调制方式,以电压过零点附件电流脉冲来表示信息,传输方向从采集模块到系统主站,代表电表数据。
系统远程秒表过程如下:在变电所主站中央处理系统的指令下,通过系统主站下行信号调制系统触发主站调制变压器,将主站命令以电压信号的形式耦合到10kV母线,下行电压调制信号随母线电压经10kV/400V用户配电变压器传输至千家万户,主站命令的发送到广播方式,所有在220V同相电压的采集模块都可收到信号。采集模块收到信号后,进行地址匹配,符合地址要求的'模块返回上行信号。在采集模块触发系统的作用下,以瞬间电流脉冲变化实现了行信号的发送。上行电流信号是终必然会在10kV母线电流互感器上有所体现。主站信号采集处理系统从变电所10kV电流互感器上完成上行信号的检测,以上是完成一次电表数据抄收的全过程。
2 信号调制原理
跨变压器台区自动抄表系统信号耦合采用基波工频过零调制方式,以过零点附近电网波形的微弱畸变来表示信息[2]。图2(a)所示为下行电压调制信号示意图。通过主站调制变压器的作用,在二次变电后母线电压过零点附近产生瞬间脉冲电流ic,由于主变的等效漏感对该脉冲电流的阻碍,形成了下行电压调制信号emod,emod与ic有90°的相位差。图2(b)中emod与母线电压的叠加使其在过零
[1] [2] [3]
一种能跨变压器台区的电力远程抄表系统
摘要:采用过零调制技术,利用数字差分、匹配滤波、纠错编码方法处理接收数据。系统具有较强的抗干扰能力,可实现跨配电变压器台区的远距离抄表,适合中国电网特点。关键词:自动抄表 跨台区 过零调制
电力系统自动抄表是电能营运部门用电管理自动化的重要手段。电力线网络是一个广泛存在的网络,利用它作为质传输配用电数据是非常方便的。跨变压器台区电力远程抄表系统采用工频过零调制、匹配滤波、纠错编码技术,利用现有10kV/220V配电网实现无中继、无桥接设备、跨变压器台区、在不同电压等级之间的远程自动抄表。这种抄表系统是一种不同于传统电力线载波抄表的新型技术,它不存在配电网载波抄表中的多径干扰与通信盲点问题,调制信号的频率仅为几百赫兹,可以随电网远距离跨变压器台区传输。
目前,电力系统自动抄表主要方式有:485总线、无线、红外、普通电力载波、扩频电力载波、零相超窄带(TURTLE)、超窄带极低频(UNB)及工频过零调制(PFC)跨变压器台区方式等。其中,工频过零调制远程抄表以其独特的信号传输原理,可以完成以配电网络为信号传输媒介,跨变压器台区远程自动抄表。这种抄表系统的最大特点是:系统实施简单,信号抗干扰能力强,可实现跨配电变压器的远距离数据传输[1]。
(本网网收集整理)
1 系统组成
图1所示为跨变压器台区远程自动抄表系统方框图。该自动抄表系统由系统主站与采集模块两部分组成。系统主站位于二次变电所,完成远方采集模块的电能表数据抄收,并能上传数据至用电管理部门。采集模块位于用户电能表,负责电能表脉冲数的累计,能按主站命令通过电力线网络上传数据。这种抄表系统以配电网10kV及220V电力线路为通信介质,在用户变压器附近不需要增加任何附加设备,对配电网络没有特殊的要求,既适合架空电缆,也可用于地下线路。
跨变压器台区自动抄表系统以半双工方式工作,信号分为下行信号与上行信号两部分。下行信号为电压调制方式,以电压过零点附件电压微弱畸变来表示信息,传输方向从系统主站到远端采集模块,代表系统主站的抄表命令;上行信号为电流调制方式,以电压过零点附件电流脉冲来表示信息,传输方向从采集模块到系统主站,代表电表数据。
系统远程秒表过程如下:在变电所主站中央处理系统的指令下,通过系统主站下行信号调制系统触发主站调制变压器,将主站命令以电压信号的形式耦合到10kV母线,下行电压调制信号随母线电压经10kV/400V用户配电变压器传输至千家万户,主站命令的发送到广播方式,所有在220V同相电压的采集模块都可收到信号。采集模块收到信号后,进行地址匹配,符合地址要求的模块返回上行信号。在采集模块触发系统的作用下,以瞬间电流脉冲变化实现了行信号的发送。上行电流信号是终必然会在10kV母线电流互感器上有所体现。主站信号采集处理系统从变电所10kV电流互感器上完成上行信号的检测,以上是完成一次电表数据抄收的全过程。
2 信号调制原理
跨变压器台区自动抄表系统信号耦合采用基波工频过零调制方式,以过零点附近电网波形的微弱畸变来表示信息[2]。图2(a)所示为下行电压调制信号示意图。通过主站调制变压器的作用,在二次变电后母线电压过零点附近产生瞬间脉冲电流ic,由于主变的等效漏感对该脉冲电流的阻碍,形成了下行电压调制信号emod,emod与ic有90°的'相位差。图2(b)中emod与母线电压的叠加使其在过零点前30°附近产生幅值畸变,反映在时间轴上,表示为Δt1和Δt2。理想的工频通信电压调制信号是一个周期的正弦波形emod,持续时间2~3ms,但由于主变待效参数中阻性成分的作用,再加调制信号在系统中的响应,实际的调制信号为衰减的振荡信号,持续时间不会超过一个电压周期,这样,可以用连续的两个电压周期定主一位下行信号。若调制信号叠加在第1个周期电压过零点附近,表示下行信号的bit“0”,那么调制信号叠加在第2个周期就表示下行电压信号的bit“1”。过零调制信号的半功率点频率范围为200~600Hz。配电网的重要功能是输送50Hz电力信号,电网的各次谐波也很容量沿配电网跨变压器传输,这里刚好有效地应用了电网的谐波频段。现场测试证明;过零调制信号跨变压器传输可达40km以上。
3 信号检测原理
跨变压器台区电力通信中信号的检测是一种大背景下小信号的检测。以主站上行电流信号的检测为例,若采集模块在电压过零附近调制一个50A的峰值电流信号脉冲(对应电压过零点瞬间功率很小),该电流折算到10kV母线上是50×220/10000=1.10A。而作为一个中型变电所其母线(10kV/传输母线)上的电流大概是1000A左右,背景信号与上行电流信号的比值接的1000:1。显然要准确地检测出有用信号是相当难度的,这里完全没有考虑信号的衰减情况。下行电压信号过零点附近电压畸变率不到0.5%。检测过程中的一项重要任务是背景信号的去除。这里需要判别调制信号的有无,对调制信号本身的大小和形状并无过多要求。为了检测跨台区抄表系统中的调制信号,需对所采数据预处理。预处理采用数字差分技术(Digital diffe
rence technique)。
3.1 数字差分
数字差分是用前一次的采样值与当前的采样值进行差运算。如图3所示,可以用方程(1)描述:
d(t1)=F(t1)-F(t1-T) (1)
如果,F(t)=A1Sin(ω1t),T是电力信号周期,当无调制信号时,d(t1)=0。从这个结果可以看出,由式(1)所描述的数字差分技术应用到具有稳定周期的周期信号时,其差分结果恒等于零。这种方法,很容易实现下行信号的背景消除。同时可以减弱电网中整数次谐波信号的影响。
图3对应下行信号的bit“0”,调制信号emod叠加在第一周期的电压过零点,使其电压微弱形变,显然差分的结果d(t1)=emod。但由于各种家用电器的影响及电力负载开关的切换,再加上电网中的各种非整次谐波的干扰,数字差分所得emod往往淹沿在噪声中,影响一次抄表成功率。
跨变压器台区自动抄表系统中调制信号的波形特征已知,抄表过程中仅仅需要判别在电压过零点附过近有无信号,这是一种基于先验知识的信号检测,可以采用匹配滤波技术。
3.2 匹配滤波
对于单频率的周期信号,窄带滤波器可以使输出滤波器的信噪比大大提高。但对于非周期信号,窄带滤波器不一定是最佳的。对于确定的输入信号s(t),可以设计一定是最佳的。对于确定的输入信号s(t),可以设计一种匹配于待测信号的滤波器,这就是匹配滤波器。理论证明,当让加性白噪声与信号通过匹配滤波器时,滤波器输出信噪比达到最大。匹配滤波器脉冲响应函数与待测信号s(t)成径向对称,即h(t)=ks(t-t0)。这里,h(t)是滤波器系统函数,k为系统增益,t0是待测信号待续时间。令表示调制信号的功率,白噪声的功率谱密度为N0/2,那么由匹配滤波原理可推出:输出信噪比。可见,增加跨台区自动抄表系统调制信号的持续时间以提高发送信号的功率有利于接收端信号的检测。匹配滤波器在时域上等同于互相关,实现起来更容易,而且互相关运算与卷积运算只有符号的差异,可以采用FFT快速算法实时处理数据[3,4]。
采集模块与主站分别采用不同的方法得到互相关数据。对于采集模块而言,可以在用户端采样,多周期同步累加去除干扰测得主站调制的下行信号数据,该数据存储于采集模块存储器中用于匹配滤波;对于主站而言,因为不同的采集模块有很大的分散性(元器件、安装位置),不能采用同一滤波常数。采集模块所发送上行信号前面有前导位,用于主站确定采集信号的窗口位置,同时自适应地调整匹配滤波器的参数。
3.3 差错控制编码技术
配电网的主要功能是传输电路,并不是为电力通信设计,信号传输过程中会遇到各种干扰。其中,影响最大的是电网中的脉冲噪声。脉冲噪声具有瞬间、高能量、覆盖频率范围广的特点。当抄表系统被脉冲噪声干扰时,前面几种信号处理办法均无能为力,需借助纠错编码技术。所谓纠错编码,也叫差错控制编码。其基本实现方法是在发送端将被传输的信息码元附上一些监督码元,这些多余的码元与信息码位之间有某种确定的约束规则(由生成多项式确定)。接收端按照既定的规则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误[6]。汉明码是常见的差错控制编码之一。本通信系统采用内嵌校验和的(63,51)BCH码。该码具有较强的抗干扰能力,可以纠正数据传输过程中的1位及2位错误,对于3位及3位以上错误能够给出错误标志。抄表系统可根据标志位重发抄表命令。
跨变压器台远程自动抄表系统,采用独特的信号调制及信号检测方法,是一种适合中国城乡配电网的自动抄表系统。目前,该系统已由哈尔滨工业大学与黑龙江电力公司合作研究成功,并进入实用阶段,于10月通过电力科学院检测中心型式试验,检测号:(配用电)榆字第077号。
一种基于配电网的跨变压器台区电力通信技术
摘要:跨变压器台区电力通信信号的频带位于200~600Hz之间,该信号可自动跨过配电变压器通过电力线实现数据交换。这种配电网通信方式采用过零调制发送及数字差分接收技术,具有信号调制功率小、抗干扰能力强、传输距离远的特点。介绍了跨变压器台区电力通信信号的定义、调制、解调方法及抗干扰措施。关键词:过零调制差分接收相关技术神经网络
跨变压器台区电力通信技术是一种以配电网为媒介的新型数据传输技术。该技术解决了如何利用现有配电网实现无中缝、无桥接设备的跨变压器台区在不同电压等级之间的数据交换问题。如图1所示,跨变压器台区电力通信系统由位于二次变电所的主站与位于用户电能表的采集模块组成,该系统完全以10kV/220V配电网为信息传输媒介,在用户变压器附近无需增加附属设备。信号发送采用电压过零调制的办法,在电压过零点附近可以用较小的调制功率实现信号的叠加,同时电压附近可以用较小的调制功率实现信号的叠加,同时电压过零点自然提供了通信过程中信号检测的同步。信号的检测采用差分接收技术可以从电网大噪声背景中将微弱调制信号检测出来。调制信号分为下行电压信号与上行电流信号。下行电压信号传输方向从主站到采集模块,代表命令信息,以电压过零点附近电压的微弱畸变表示信息;上行电流信号传输方向从采集模块到主站,代表用户数据,用电压过零点附近对应电流的瞬间脉冲变化表示信息。调制信号的频带位于200~600Hz之间,能够跨过配电变压器沿电力配电网远距离传输。
图1
1信号的定义
跨变压器台区电力通信技术从主站到采集模块的下行电压信号用两个相邻电压周期波形表示一位信息,通过位于变电所的主站调制变压器叠加信号,使过零点附近电压幅值发生非常微弱的畸变,第一个周期含有调制信号,表示“1”;反之,表示“0”,见图4(a)。该定义有利于采集模块处信号的检测,在采集模块可将相邻两个电压周期数据作差后检测电网中是否含有主站来的信号。
考虑到配电网电流谐波较大,从采集模块到主站的上行电流信号用4个电流周期波形表示一位信息,4个相邻周期共有8个电压过零点。在对上行电流信号定义的规定这样的原则:对8个过零区域中的4个进行调制,其中两个是正过零区,另外两个是负过零区。这样,可以得到36个码图。由于表示“1”和“0”的码图是互相对应的关系,所以共有18组码图可以使用。如果规定在8个过零点中的`1、3、6、8位置进行调制表示数字“1”那么对应调制的2、4、5、7就用来表示“0”。研究证明,不同电网通信环境需要不同码图。
2调制信号的实现
下行电压信号及上行电流信号的叠加都采用电压过零调制。之所以采用这种办法一方面是因为配电网的主站变压器(变电所的主变)及用户变压器均有等效泄漏电感使信号的叠加成为可能;另一方面在电压波形过零点附近所需调制功率最小。同时,电压的过零点位置特殊性也为信号的定位提供了条件,便于主站信号的叠加和采集模块处信号的检测。
下行电压信号的调制工作在主站完成,调制电路通过位于变电所的调制变压器进行隔离和信号的耦合,调制变压器可以是普通的用户变压器,也可以是特制的高阻抗变压器。下行电压信号调制等效电路如图2所示。图2中E为主站电压,Li表示二次变电所主变漏感,Rc、Lc为调制变压器二次侧调制电路参数,ec可以取自不同的相当于调制信号的调制位置。当位于调制变压器二次侧可控硅开关在过零点前30°导通时,导通电流i'c必然导致调制变压器一次侧ic电流的形成,通过主变引起一个电压降emod=-Li(d/dt)ic,此时的调制电压叠加于电网电压波形上,从而完成一次调制过程。根据调制变压器和主站变压器的内部参数,可以通过调整Rc、Lc的值来得到需要的调制信号的强度及位置。
图2
上行电流信号的发送调制与下行电压信号的调制原理基本相同,但是利用电流形变来携带信息,由用户端调制设备来完成。
3信号的解调
跨变压器台区电力通信中信号的检测是一种大背景下小信号的检测。以主站上行电流信号的检测为例,若采集模块在电压过零附近调制一个50A的峰值电流信号脉冲(对应电压零点瞬间功率很小),该电流折算到10kV母线上是50×2200/10000=1.10A。而作为一个中型变电所其母线(10kV传输支线)上的电流大概是1000A左右,背景信号与上行电流信号的比值接近1000:1。显然要准确地检测出有用信号是相当难度的,这里完全没有考虑信号的衰减情况。下行电压信号过零点附近电压跨变率不到1%。检测过程中的一项重要任务是背景信号的去除。这里需要差别有无调制信号,对调制信号本身的大小和形状差不过多要求。跨变压器台区电力通信系统可以采用时域方法解调信号。
信号的检测采用数字差分技术,用前一次的采集值与当前的采样值进行做差运算。如图3所示,可以用下面的方程描述出来:
d(t1)=F(t1)-F(t1-T)(1)
经过推导可得:
(2)式为跨变压器台区通信系数数字差分检测不同算法提供了理论依据。实践证明,数字差分技术对电网的整次谐波有很强的抑制能力。
下行电压信号的检测:
图4(a)表示的下行电压信号的bit“0”,两个周期表示一位,调制信号叠加在第二个周期电压过零点附近。若调制信号叠回在第一个周期,则表示下行电压信号的bit“1”。为了检测信号的方便,将图4(a)波形全波整流得到图4(b)波形。图4(b)中高有两个比较电平V1和V2,通过单片机的定时器分别测得比较电平对应时间量t11,t12,t13,t14,t21,t22,t23,t24,令Δt=(t21-t11+t22-t12)+(t13-t23+t14-t24),不考虑噪声及电网频率的变化,当电网中没有工频通信调制信号时,Δt的值为零,反之,存在调制信号,同时可以根据Δt的正负来判断所接收到的信号是“0”还是“1”。这种方法,算法简单,硬件实话容易,对于电网干扰较小的居民应用是可行的。但电网频率的波动、家用电器的干扰、检测系统时间基准的变化等很容易影响接收数据判断的正确性,则需要采用后面所述的抗干扰措施。
上行电流信号的检测:为了削弱背景电流的影响,在主站接收端对三相电流进行移相叠加,去除大背景信号的影响,然后利用相邻波形进行特征检测。根据采集模块利用电压波形过零区域调制的特性,主站接收端只需在电压过零附近设置检测窗口,然后利用相应的正交验测矩阵判断当前电流调制波形所携带的信息。
4信号检测过程中的抗干扰技术
配电网并不是理想的通信媒介,从前面的原理可以看出,采用差分技术解调能够去聊电网整次谐波的干扰,但电网的非整次谐波有可能干扰跨变压器台区通信的信号检测。相关原理、神经网络信号辨识及纠错码技术均可用于配电网跨变压器台区电力通信的信号检测以提高系统的抗干扰能力。
相关原理可用于确定信号的检测。由于本通信系统中主站及采集模块信号的波形均是确定的,所以信号接收时可通过相关函数的计算来度量所接收的信号与发送信息波形之间的相似程度,从而判定在接收的信号中是否含有调制信号,已达到从受干扰的波形中检测出有用信号目的。相关信号检测从滤波器角度等同于具有最佳信噪比的匹配滤波器。
神经网络很容易实现两个集合的非线性映射。本系统干扰信号识别中采用径向基函数(RBF)神经网络,它局部逼近神经网络,具有较强的逼近能力、分类能力及学习速度。可以用带干扰(发电机启动)的信号样本去训练神经网络,样本的选择很重要。
此外,采用纠错编码也是一种很好的抗干扰方法。所谓纠错编码,即将一个具体码字经过一定的数学运算,使码内数据具有相关性,在码字中或码字后加额外的冗余位,从而构成一个待发的码字。在接收端再按解码矩阵进行解码,达到译码的目的。常见的纠错码有汉明码,本通信系统采用内嵌校验和的(63,51)BCH码,形成CRC检测与检测和检测的双层“过滤”,再加上BCH码本身的纠错功能,从而使该码具有较强的抗干扰能力。该BCH码可以纠正数据传输过程中的1位及两位错误,同时对于3位及3位以上的错误能够出错误标志。
基于配电网的跨变压器台区电力通信技术是一种实用的配电网通信技术,相对于配电网载波通信技术而言,它具有信号衰减小、抗干扰强、传输距离远、自动跨变压器台区的特点,该技术适用于数据传输速度要求不高的远程抄表、远程负荷控制等。目前,该系统已实际应用在配电网跨台区远程抄表,经过实际运行,该系统的跨台区通信距离达40km以上,效果良好,适合中国电网环境。
一种基于配电网的跨变压器台区电力通信技术
摘要:跨变压器台区电力通信信号的频带位于200~600Hz之间,该信号可自动跨过配电变压器通过电力线实现数据交换。这种配电网通信方式采用过零调制发送及数字差分接收技术,具有信号调制功率小、抗干扰能力强、传输距离远的特点。介绍了跨变压器台区电力通信信号的定义、调制、解调方法及抗干扰措施。关键词:过零调制 差分接收 相关技术 神经网络
跨变压器台区电力通信技术是一种以配电网为媒介的新型数据传输技术。该技术解决了如何利用现有配电网实现无中缝、无桥接设备的跨变压器台区在不同电压等级之间的数据交换问题。如图1所示,跨变压器台区电力通信系统由位于二次变电所的主站与位于用户电能表的采集模块组成,该系统完全以10kV/220V配电网为信息传输媒介,在用户变压器附近无需增加附属设备。信号发送采用电压过零调制的办法,在电压过零点附近可以用较小的调制功率实现信号的叠加,同时电压附近可以用较小的调制功率实现信号的叠加,同时电压过零点自然提供了通信过程中信号检测的同步。信号的检测采用差分接收技术可以从电网大噪声背景中将微弱调制信号检测出来。调制信号分为下行电压信号与上行电流信号。下行电压信号传输方向从主站到采集模块,代表命令信息,以电压过零点附近电压的微弱畸变表示信息;上行电流信号传输方向从采集模块到主站,代表用户数据,用电压过零点附近对应电流的瞬间脉冲变化表示信息。调制信号的频带位于200~600Hz之间,能够跨过配电变压器沿电力配电网远距离传输。
图1
1 信号的定义
跨变压器台区电力通信技术从主站到采集模块的下行电压信号用两个相邻电压周期波形表示一位信息,通过位于变电所的主站调制变压器叠加信号,使过零点附近电压幅值发生非常微弱的畸变,第一个周期含有调制信号,表示“1”;反之,表示“0”,见图4(a)。该定义有利于采集模块处信号的检测,在采集模块可将相邻两个电压周期数据作差后检测电网中是否含有主站来的信号。
考虑到配电网电流谐波较大,从采集模块到主站的上行电流信号用4个电流周期波形表示一位信息,4个相邻周期共有8个电压过零点。在对上行电流信号定义的规定这样的原则:对8个过零区域中的4个进行调制,其中两个是正过零区,另外两个是负过零区。这样,可以得到36个码图。由于表示“1”和“0”的码图是互相对应的'关系,所以共有18组码图可以使用。如果规定在8个过零点中的1、3、6、8位置进行调制表示数字“1”那么对应调制的2、4、5、7就用来表示“0”。研究证明,不同电网通信环境需要不同码图。
2 调制信号的实现
下行电压信号及上行电流信号的叠加都采用电压过零调制。之所以采用这种办法一方面是因为配电网的主站变压器(变电所的主变)及用户变压器均有等效泄漏电感使信号的叠加成为可能;另一方面在电压波形过零点附近所需调制功率最小。同时,电压的过零点位置特殊性也为信号的定位提供了条件,便于主站信号的叠加和采集模块处信号的检测。
下行电压信号的调制工作在主站完成,调制电路通过位于变电所的调制变压器进行隔离和信号的耦合,调制变压器可以是普通的用户变压器,也可以是特制的高阻抗变压器。下行电压信号调制等效电路如图2所示。图2中E为主站电压,Li表示二次变电所主变漏感,Rc、Lc为调制变压器二次侧调制电路参数,ec可以取自不同的相当于调制信号的调制位置。当位于调制变压器二次侧可控硅开关在过零点前30°导通时,导通电流i'c必然导致调制变压器一次侧ic电流的形成,通过主变引起一个电压降emod=-Li(d/dt)ic,此时的调制电压叠加于电网电压波形上,从而完成一次调制过程。根据调制
[1] [2] [3]
远程自动抄表系统现状以及发展趋势-论文
电能自动抄表系统是一种采用通讯和计算机网络技术,将安装在用户处的电能表所记录的用电量等数据通过遥测传输汇总到营业部门,代替人工抄表及后续相关工作的自动化系统。采用此方式不仅能节约大量人力资源,更重要的是可提高抄表准确性,供电管理部门能得到及时准确的数据信息,如电能需量、分时电量和负荷曲线等,同时电力用户不再需要与抄表者预约时间,电能自动抄表技术使电力公司根本上解决了入户抄表收费给用户和抄表人员带来的麻烦,避免了许多不必要的纠纷,准确而便捷的收费系统,不但能提高管理部门的工作效率,也适应现代用户对用电缴费的需求。
一、远程自动抄表计费系统的发展
随着电能计量表由传统的机械式、电子式脉冲电能表向多功能电子式电能表的发展,远程抄表计费系统也经历了一个从集中式系统向分布式、网络化、开放式系统转变的发展过程。电量数据采集也同样从集中式脉冲处理系统发展为分布式直接传输系统。
采用集中脉冲方式的系统,电能采集和传输是以电能脉冲计数为基础的,在厂站需增加中间转换器用来存储和传输根据脉冲计数值而得到的电能信息。数据采集中心不能直接与电能表通信,不能实现现代电能管理系统所必须的对电能表参数的下载功能。
脉冲电能表在80年代占主导地位,但90年代后分布式直接传输的智能电表越来越普遍,且近年来的新型固态智能化多功能表的发展,使得先进的分布式直接数字传输系统成为可能并占据主导地位。
二、远程自动抄表计费系统的构成
远程自动抄表系统主要包括4个部分:具有抄表功能的电能表、区域集中中心、抄表交换机和中央主控机房。区域集中中心是将多台电能表连接成本地网络,并将它们的用电量数据集中汇总,其本身具有通信功能且含有专用软件。当多台区域集中中心需再联网时所采用的设备就称为抄表交换机,它可与公共数据网接口。有时区域集中中心和抄表交换机可合二为一。中央主控机房是利用公用数据网,将所得电表数据抄回并进行处理的计算机系统。
2.1电能表
具有自动抄表功能且能用于远程自动抄表系统的电能表有脉冲电能表和智能电能表两类。
2.1.1脉冲电能表 能够输出与转盘数成正比的脉冲串。根据其输出方式的不同又可分为电压型脉冲电能表和电流型脉冲电能表两种。电压型表输出脉冲电平信号,采用三线传输方式传输距离较近;而电流型表的输出脉冲是电流信号,采用两线传输方式,传输距离较远。
2.1.2智能电子表 可以通过串行口以编码方式进行通信,按照智能表的输出接口通信方式划分,智能电能表可分为RS-485接口型和低压配电线载波接口型两大类。
2.1.3电能表的两种输出接口比较 输出脉冲方式技术简单但在传输过程中容易发生丢失脉冲或产生多脉冲现象,而且不可以重新发送。因此此方式电能表功能单一,一般只输送电能信息,难以获得最大电量、电压、和功率因数等多项数据。串行接口输出方式只能用于采用微处理器的智能电子式电子表,此方式可以将采集的多项数据进行远程传输,但是由于没有统一的通信规范使得各厂家的设备之间不便于互连。
2.2区域集中中心和抄表交换机
区域集中中心是将远程自动抄表系统中的`电能表的数据进行一次集中的装置。对数据进行集中后再通过电力线载波等方式将数据继续上传。抄表集中器能处理脉冲电能表的输出信号也能通过RS-485方式读取智能表的数据。抄表交换机是远程抄表系统的二次集中设备,它集结的是区域集中中心的数据,然后再通过公用电话网或电力线载波方式传输到电能计费中心的主机。
2.3电能计费中心的计算机网络
电能计费中心的计算机网络是整个自动抄表系统的管理层设备,通常由单台计算机或计算机局域网再配以相应的抄表软件组成。
三、远程抄表系统的典型网络结构及实现
3.1抄表集中器通过RS-485读取智能电表数据或直接接受脉冲电能表输出脉冲。区域集中中心与抄表交换机之间采用低压配电线载波方式传输数据。抄表交换机与电能计费中心的计算机网络之间通过公用电话网传输数据。
3.2区域汇总中心(local center)可通过串行通信芯片与PC机串行通信。采用巡检方式读取各表数据。专用电力线载波通信芯片可实现可靠的半双工电力线数据通信。完整的DTMF收发器不仅能收发DTMF信号,还可选择呼叫过程滤波器以检测电话干线上的回铃音、拨号音、忙音等信号音,适合与单片机接口,且外围逻辑电路简单。
3.3中心微机软件要求有良好的人机界面、实时地图显示及绘制等处理功能、强大的记录功能,可将GIS(地理信息系统)应用于远程抄表系统中,便于中心主机作出分析判断,可以以文字形式显示各区域或用户的用电量信息;以图形方式显示用户地点和工作人员前往的最佳路径,实时动态的显示系统当前设备装置状态,建立相应数据库;对周月季年的用电量进行统计分析。
四、结论
本文介绍的自动抄表系统设计方案,充分结合电话和电力线载波两种通信方式的优点,既能实现快速远距离传送信息又能随时巡检用户状况。该方法应用于我国的电力配电网络通信中将能够大大提高效率和降低通信成本,其经济效益和社会效益是十分巨大。
电力营销远程抄表技术现状与对策论文
【摘要】随着我国科学技术和电子信息的巨大进步,电力行业的发展条件得到了明显改善。作为电力行业的一种重要营销管理模式,远程自动抄表技术对电力行业和供电企业提高用电营销管理水平、增加供电企业经济效益和社会效益具有十分重要的意义。文章将对远程自动抄表技术在电力行业的应用状况进行分析,探讨如何进一步改进远程抄表技术在电力营销中的方法和措施。
【关键词】电力营销;远程抄表技术;营销管理模式
我国社会主义现代化建设的进程在不断加快,人民生活水平的日益提高,对电力的需求快速增加,在这种状况下,原有的抄表和收费模式已经不能适应当前的电力现代化发展。在科学技术为支撑的基础上,电力行业的发展也在进入自动化、一体化的层次水平,因而在电力营销中对自动化的和一体化的管理应用成为电力行业领域的发展潮流,运用远程抄表技术能够更加有效提高电力营销和管理水平,更好为生产和生活进行服务。
一、当前电力营销远程抄表技术的现状和存在的问题
远程抄表技术是通过应用电量采集设备和相关应用软件系统建立电能表的档案,从而实现对电量采集状况的分析和处理,明确监测计算母线电量平衡,能够及时找到和发现问题,同时还能够方便用户在变电站进行自动抄表,并对电费进行符合营销系统的标准计算,如果某用户对电能的消耗较大的话,则需要增加抄表的次数,以五天为一个周期进行。当前电力行业进行信息沟通交流是以公用电话或者是光缆等公共通信网络为依据平台,一般来说,对电力通信主要是通过控制软件和通信连接采集设备实现信息交流,监测电力设备的整体运行情况,使得电力系统能够稳定健康运行。但是,在运行的过程中,由于受到其他客观条件的限制和影响,自动抄表技术还存在着一些问题:第一,自动抄表技术在整体上并没有实现全面运行优化,使得很多的电力网络还没有和自动抄表技术的环节实现有效融合,从而使得自动抄表技术的安全防护作用没有完全有效地发挥作用,网络运行存在着诸多漏洞,使得远程抄表技术存在安全隐患。第二,电力信息数据采集没有形成统一的具体标准,而且很多电力设备老化落后,这样在进行电力数据采集的时候就会受到影响和阻碍,使得采集电力数据的准确性受到影响。第三,远程抄表技术的整体管理还没有形成系统化,当电力信息数据出现不正常的情况时不能够按照统一标准进行规范处理,很多地区和行业的电力数据和电费使用标准存在着很大的差异性,致使电力数据没有统一规范,不能有效匹配,影响了电力数据传输的质量。第四,远程抄表技术的总体应用范围还具有一定的局限性,很多地区还不能够做到自动化抄表,很多变电站不能够满足用户的需求,因而无法对电力传输过程中出现的损耗进行准确分析和统计,不能够从整体上把握电力系统运行的真实状况。
二、如何有效改进远程抄表技术的方法
(一)远程抄表设备和技术
虽然远程抄表技术在我国很多行业和领域进行了应用,但是很多相关的设备和技术没有统一的规范标准和使用要求,同时我国地区面积范围十分广大,远程抄表技术面临着错综复杂的应用环境,在这种情况下电能工作表必然会引起工作故障。因此,为了防止电力数据出现遗失和电力应用平台出现错位的情况出现和发生,要对电力信息数据采集系统的应用进行规范和建立统一的标准,让远程抄表技术成为电力系统行业的主流发展方向,将远程抄表技术更加广泛地运用到各行业和领域,将各地区的电力数据进行有效整合,使得整个远程抄表应用系统更具有综合性,这样为实现远程抄表技术打下坚实的基础。同时,针对所采集的电力数据进行综合分析,按照不同的'电压、不同的线路、不同的地区进行具体计算。
(二)采集终端
将电能表进行更新,把传统的机械电能表升级为电力电能表,这样能够使得电能表的运行状态能够更加稳定、数据体现更加准确,实现电力数据监测自动化。通过更加先进的电力设备进行负荷控制,促进远程电力收费。当然还要充分考虑到各地区的不同气候以及用户的具体需求,将电力数据采集终端和环境用户的需求吻合,保持健康的运行。
(三)及时上传检测数据
要详细记录电能表的具体的抄表时间和抄表的间隔周期,将所得的记录详情进行总结。与此同时,将低压载波较为集中的内部结构中存在的电子时钟进行设定,实现有效的自动化抄表时间记录,并进行数据整理,向电力系统服务器进行上传。
(四)预警功能
对电力系统的运行难免会出现不正常的运行状况,如果发生突发状况的时候,要发挥出抄表系统的预警功能。出现突发状况的时候,远程抄表技术能够通过相关的功能检测出现故障发生的区域,并及时做出预警指示,从而使得电力系统运行能够及时恢复运行,这样就能够使得用电量能够得到一定程度的追加,为电费的结算提出科学的参考依据。同时,要对电力系统的设备进行统筹分布规划,使得整体的电力运行处于均衡的状态。
三、结语
由此可见,远程抄表技术的自动化和一体化运行受人力、管理、环境条件等因素的制约还不够完善和规范,因此,要有效提升远程抄表技术人员的管理和维护水平,不断完善远程抄表技术的应用,改善整体电力营销行业的状况和条件,更好地服务于生活和生产。
参考文献:
[1]王菲,郭衡,吕信岳.电力营销远程抄表技术现状与问题研究[J].中国电力教育,,(33).
[2]郑秀琼.电力营销远程抄表技术现状与问题探究[J].电子制作,,(9).
[3]李锦晔.浅论电力营销中远程自动抄表技术的现状及存在问题[J].科技视界,2015,(21).
[4]严学全.论述电力营销中远程自动抄表技术的现状及存在问题[A].云南电力技术论坛论文集(入选部分)[C]..
一种基于无线通讯与公用电话网的智能抄表系统
摘要:自来水智能抄表系统是能源管理体制现代的体现。该系统的结合传感技术、射频技术、微电子技术等,通过无线通讯传输水量信号,利用现有广泛使用的电话网及计算机,将数据发送给管理端,完成数据处理。关键词:无线通讯 公司电话网 计算机 抄表
传统的供水计量操作通常是由各管理部门派人到装表地点抄表,由于用户面广、量大,极易造成差错,人工抄表不但效率低,且不利于科学管理,给城市管网的建模、分析、规划等都带来很大的困难。电子和计算机技术的迅速发展,为实现自动抄表技术提供了大环境,管理体制的现代化也呼唤着自动抄表时代的到来。目前我国普遍采用将水表安装在用户室内,每月入户抄表收费的方法。这给用户带来很多麻烦,给抄表人员带来烦恼,造成很多不必要的纠纷。为了有效解决入户抄表收费存在的诸多弊端、提高效率、避免入户抄表引发的治安问题(如冒充收费入室抢劫)和杜绝拖欠费用,水表户外计量呼声越来越高。尤其对高层、毫华居住小区,水表户外计量是非常必要的,传统的抄表方式已不能适应今后住宅的发展要求。
随着电子技术、传感技术、自动控制技术和计算机技术的发展,水表户外计量已经开发出不少产品。主要有:IC卡、电力载波、远传抄表三种户外计量方式。建设部《小康型城乡住宅科技产业工程城市示范小区规划设计导则(修改稿)》中已经明确提出:“推广应用户外计量(含水、电、暧、燃气表)技术”。在《中国住宅产品发展纲要》中也明确提出:“实现方便查表,不干扰住户,使大量人工查表工作逐步过渡到数字化传送,开发智能化的水、电、气、热计量装置及接口箱框”。目前水表户外计量的智能抄表系统已达到使用要求。因此,结合传感技术、射频技术,利用现有广泛使用的电话网,设计开发了结构独特、性能稳定、完全可靠的自来水智能抄表系统。
(本网网收集整理)
1 设计要求
为保证自来水智能抄表系统的准确性和可靠性,提高能源管理的科学性、规范化,对智能抄表系统提出以下要求:
(1)水表为密封结构,是一种既能直观显示相关能耗计量数据,又能产生能耗计量脉冲信号的新型计量表具。
(2)系统具有防断电功能。停电时,发射端和接收端装有备用电池,防止数据丢失。
(3)系统采用高精度不掉电实时时钟,为数据分时处理提供可靠的时间基准;可实现分时段计费功能;通过通讯设备故障报警、记录故障发生时间的功能。
(4)数据库安全。数据库为只读方式,只有授权的管理员可以写入数据,管理中心电脑设有密码,严防无关人员操作,密码可由操作员在主机上修改。可提供计费查询、报表生成、打印、报警等功能。
2 总体结构
智能抄表系统现有两种形式:
(1)用户室内装有电话,抄表系统结构如图1所示。数据采集通过无线通讯将数据传送给数据处理器,数据处理器通过电话线向管理计算机上报数据。
(2)用户室内没有电话,抄表系统结构如图2所示。数据采集器通过无线通讯传送给数据处理器,数据处理器安装在室外的走廊内,并附带显示模块显示用户当用水量。安装在走廊内的数据处理器通过公用电话线向管理计算机上报数据。如果住户的房间被铁门等屏蔽而无法实现无线通讯,可以铺铺设专用通讯线,将数据上传。
3 系统组成
(1)水表。本系统所采用的计量水表是一种既能直观显示相关能耗计量数据,又能产生能耗计量脉冲信号的新型计量表具。它实际上是一种加装了永义磁铁和霍尔元件组成磁电传感器的水表,霍尔元件固定安装在计数转盘附近,永磁铁安装在计数盘(例如0.1m3或0.01m3)位上,当转盘每转一圈,永磁铁经过霍尔元件一次,即在信号端产生一个计量脉冲,对应0.1m3或.0.01m3,经无线发射器发送给数据处理器。另外,在水表上还装有防盗霍尔元件,当用户盗用水时,霍尔元件发出报警信号给数据处理器,数据处理器再通过电话线报告给管理计算机,以便做出处理。
(2)数据处理器。数据处理器是一个多功能模块,实现水表数据的'自动抄收,将数据长期、可靠地存储,并在需要时将其传给管理计算机。具体来说,它用于接收水表数据及各种报警信号,累计住户用水量,通过电话线定期向管理计算机发送住户的有关数据。一台数据处理器对应一块水表,一般安装在电话机附近。数据处理器内部有可充电电流作为后备电源,在外部电源停电的情况下,则由充电电流单独向数据处理器供电,保证数据处理器正常工作。
(3)管理计算机。管理计算机是本系统的管理核心,可通过电话线下接许多数据处理器,数据处理器的个数基本不受限制。管理计算机能随时抄收每个用户水表的数据,并将数据保存在数据库中供查询,能对整个系统进行管理,对所抄数据进行处理。
4 系统硬件电气原理分述
4.1 水表发射器电气部分原理
水表发射器的功能是将水表计量的用水量,以无线通讯的方式传送给数据处理器。框图如图3所示。安装在水表内的霍尔传感器用来检测用水量,水表中每流过0.1t水,霍尔传感器就发出一个脉冲信号,经串稳态电路产生一个红1s宽的脉冲,再经施密特反相器4069整形后送入编码器PT2262进行编码,PT2262全码编址为4 11个,经编码后的数据送入无线发射模块进行发射,无线电发射频率为400MHz,有效距离为50m;同时发射器还具备一些附加功能。
(1)防盗功能。由于干式水表靠电磁传动的特点,它易受外磁场的影响。如果用户在水表附近放有强磁铁,它会使水表传动齿轮转速降低,使水表的测量精度降低。而发射器上另装有一个专用于测量磁场强度的霍尔传感器,当发现水表附近有强磁场时,霍尔传感器发出报警脉冲,经发射器无线传送给数据处理器。
(2)备用电池。为保证发射器在停电时能正常工作,在交流220V供电的同时,还备有一个4.8V的镍氢电池、由LM358、555组成的电池电压监测和充电电路,使电池能正常充电。后备电池可维持发射器连续工作48h。
4.2 数据处理器电气部分原理
数据处理器是本系统的关键设备。由无线接收和解码部分、时钟日历、8051及外围、电话收发电路、电源等部分组成。框图如图4所示。无线接收模块与发射模块工作在相同频率400MHz上;解码由PT2272完成,工作频率与PT2262相同, 地址编码与PT2262一致。时钟日历芯片DALLAS12887为系统提供准确的百年时钟日历,包括年、月、日、时、分、秒、星期和定时报警信号。
电话收发电路由拨号电路和音频解码电路组成。4-16译码妻MC4514模拟开关4066组成3*4虚拟键盘阵列,由8051控制过按键的开与合,完成将要拔出电话号码和上传数据的编码,并将电话号码和数据送入拨号电路。拨号专用芯片为W91312,晶振频率为3.58MH,接收到管理计算机机端的电话号码后立即拨出。当两端的握手信号完成,确认线路接通后,由8051控制将上传的数据以音频方式输出给管理计算机;音频解码电路的功能是将音频信号解码,以BCD码的形式输出。当数据处理器拨通管理计算机后,管理计算机端回复一个接通握手信号,该信号是音频信号,经交流放大电路放大后,送入音频解码芯片MC145436解码,最后以BCD码的形式送入8051。
系统供电采用220V交流和锂后备电池供电的双重方案,当住宅停电或人为断电时,系统仍可维持正常工作48h。
4.3 管理计算机通讯接口板电气部分原理
管理计算机通讯接口板由拨号电路、音频解码电路、电话振铃检测电路、光电隔离电路和电源电路组成,如图5所示。拨号电路和音频解码电路与数数处理器板上的相同。
5 系统软件
本系统软件由数据接收、数据转换和收费系统三部分组成。
(1)数据接收系统。由于需要从并口读取用户的用水量,所以在用户的用水量上来之后,先由数据接收系统将用户的数据转换成文本文件。此系统在操作系统启动后自动启动,且一直处于工作状态。
(2)数据转换系统。考虑到数据接收之后形成的是文本文件,不能直接进入数据库,所以设计一个数据转换系统将数据存入数据库。此系统在操作系统启动后自动启动,且一直处于工作状态。
(3)收费系统。在合法用户登录到本系统后,进行日常的业务处理。根据用户的计算机配置情况,该系统可以在单机环境下运行,也可以在网络环境下运行。
单机运行环境对计算机软、硬件的要求:操作系统为WIN95/WIN98;数据库为Oracle734。
网络运行环境对计算机软、硬件的要求:操作系统的客户端为WIN95/WIN98、服务器端为WIN/WINNT;
数据库的客户端为Oracle734;服务器端为Oracle8i;
硬盘:5G;
水作为一种有限的资源,越来越为人们所重视,节约用水已不再是一种倡议,而是我们的责任和义务。因此,对居民、企事业单位用水的准确计量是十分迫切的,一户一阀,一户一表已是大势所趋。另一方面,联一户一表工程的实施,居民用水的计量与收费的难度也逐渐加大,为了有效解决入户抄表收存在的诸多弊端,提高效率,避免入户抄表引发的治安问题,杜绝拖欠费用。因此,户外
智能抄表代替传统入户抄表势在必行。
在现有的智能抄表中,有通过动力线载波网络实现的,有通过铺设专用线实现的,比较两种智能抄表系统,用动力线载波网络实现局限性比较大,主要受变压器限制;通过铺设专用线来实现,施工工程比较大,改造费用也比较高。因此,采用公用电话网实现智能抄表系统,避免了上述的不利因素,适用面比较广泛,安装方便,不用铺线,改造费用也比较小,给用户带来很多方便。因此,应用前景非常广阔。
一种基于无线通讯与公用电话网的智能抄表系统
摘要:自来水智能抄表系统是能源管理体制现代的体现。该系统的结合传感技术、射频技术、微电子技术等,通过无线通讯传输水量信号,利用现有广泛使用的电话网及计算机,将数据发送给管理端,完成数据处理。关键词:无线通讯 公司电话网 计算机 抄表
传统的供水计量操作通常是由各管理部门派人到装表地点抄表,由于用户面广、量大,极易造成差错,人工抄表不但效率低,且不利于科学管理,给城市管网的建模、分析、规划等都带来很大的困难。电子和计算机技术的迅速发展,为实现自动抄表技术提供了大环境,管理体制的现代化也呼唤着自动抄表时代的到来。目前我国普遍采用将水表安装在用户室内,每月入户抄表收费的'方法。这给用户带来很多麻烦,给抄表人员带来烦恼,造成很多不必要的纠纷。为了有效解决入户抄表收费存在的诸多弊端、提高效率、避免入户抄表引发的治安问题(如冒充收费入室抢劫)和杜绝拖欠费用,水表户外计量呼声越来越高。尤其对高层、毫华居住小区,水表户外计量是非常必要的,传统的抄表方式已不能适应今后住宅的发展要求。
随着电子技术、传感技术、自动控制技术和计算机技术的发展,水表户外计量已经开发出不少产品。主要有:IC卡、电力载波、远传抄表三种户外计量方式。建设部《2000年小康型城乡住宅科技产业工程城市示范小区规划设计导则(修改稿)》中已经明确提出:“推广应用户外计量(含水、电、暧、燃气表)技术”。在《中国住宅产品发展纲要》中也明确提出:“实现方便查表,不干扰住户,使大量人工查表工作逐步过渡到数字化传送,开发智能化的水、电、气、热计量装置及接口箱框”。目前水表户外计量的智能抄表系统已达到使用要求。因此,结合传感技术、射频技术,利用现有广泛使用的电话网,设计开发了结构独特、性能稳定、完全可靠的自来水智能抄表系统。
1 设计要求
为保证自来水智能抄表系统的准确性和可靠性,提高能源管理的科学性、规范化,对智能抄表系统提出以下要求:
(1)水表为密封结构,是一种既能直观显示相关能耗计量数据,又
[1] [2] [3] [4] [5]