大学物理电磁学知识点

| 收藏本文 下载本文 作者:萝卜青菜梗

以下是小编帮大家整理的大学物理电磁学知识点(共含5篇),欢迎大家收藏分享。同时,但愿您也能像本文投稿人“萝卜青菜梗”一样,积极向本站投稿分享好文章。

大学物理电磁学知识点

篇1:大学物理电磁学知识点

【一】

感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的变化。

楞次定律的核心,也是最需要大家记住的是“阻碍”二字。

在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。

楞次定律(Lenzlaw)是一条电磁学的定律,从电磁感应得出感应电动势的方向。其可确定由电磁感应而产生之电动势的方向。它是由_理学家海因里希·楞次(HeinrichFriedrichLenz)在1834年发现的。

楞次定律是能量守恒定律在电磁感应现象中的具体体现。楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。

对楞次定律的正确理解与使用分析:

第一,电磁感应楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式;

第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍(更确切来描述应该是“减缓”)原磁场磁通量的变化;

第三,正因阻碍是的是“变化”,所以,当原磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。这就是老师总结的做题应用定律“增反减同”四字要领的由来。

楞次定律阻碍的表现有哪些方式?

(1)产生一个反变化的磁场。

(2)导致物体运动。

(3)导致围成闭合电路的边框发生形变。

楞次定律的应用步骤

具体应用包括以下四步:

第一,明确引起感应电流的原磁场在被感应的回路上的方向;

第二,搞清原磁场穿过被感应的回路中的磁通量增减情况;

第三,根据楞次定律确定感应电流的磁场的方向;

第四,运用安培定则判断出感生电流的方向。

高中物理网编辑提醒大家,楞次定律要灵活运用,有些题可以通过“感应电流的磁场阻碍相对运动”出发来判断。

在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难。

对于这样的问题,在运用楞次定律时,一般可以灵活处理,考虑到原磁场的磁通量变化又是由相对运动而引起的,于是可以从“感应电流的磁场阻碍相对运动”出发来判断。

【二】

磁感应强度(magneticfluxdensity),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

磁感应强度的定义公式

磁感应强度公式B=F/(IL)

磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。

如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。

如果是电磁铁,那么B与I、匝数及有无铁芯有关。

物理网很多文章都建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。

R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。

如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。

B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。

描述磁感应强度的磁感线

在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。

磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。

磁感线都有哪些性质呢?

⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N;

⒊磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。

⒋任何两条磁感线都不会相交,也不能相切。

磁感线(不是磁场线)的性质与电场线的性质对比来记忆。

磁感应强度B的所有计算式

磁感应强度B=F/IL

磁感应强度B=F/qv

磁感应强度B=ξ/Lv

磁感应强度B=Φ/S

磁感应强度B=E/v

其中,F:洛伦兹力或者安培力

q:电荷量

v:速度

ξ:感应电动势

E:电场强度

Φ:磁通量

S:正对面积

磁通量

磁通量是闭合线圈中磁感应强度B的累积。

⒈定义一:φ=BS,S是与磁场方向垂直的面积,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积;

⒉定义二:表示穿过某一面积磁感线条数;此时,我们认为B代表的意义是单位面积内的磁感线密度。

磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。同学们能不能想到其他类似的物理量呢?比如,电流,也是有“运动方向”的标量。

当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф-ф(ф为正向磁感线条数,ф为反向磁感线条数。)

篇2:大学物理电磁学知识点

步骤1.模型归类

做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力_了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半。

步骤2.解题规范

高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。

步骤3.大胆猜想

物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像_的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

篇3:大学物理电磁学知识点

图象法

应用图象描述规律、解决问题是物理学中重要的手段之一.因图象中包含丰富的语言、解决问题时简明快捷等特点,在高考中得到充分体现,且比重不断加大。

涉及内容贯穿整个物理学.描述物理规律的最常用方法有公式法和图象法,所以在解决此类问题时要善于将公式与图象合一相长。

对称法

利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。像课本中伽利略认为圆周运动最美(对称)为牛顿得到万有引力定律奠定基础。

估算法

有些物理问题本身的结果,并不一定需要有一个很准确的答案,但是,往往需要我们对事物有一个预测的估计值.像卢瑟福利用经典的粒子的散射实验根据功能原理估算出原子核的半径。

采用“估算”的方法能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量级的计算。

微元法

在研究某些物理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解.像课本中提到利用计算摩擦变力做功、导出电流强度的微观表达式等都属于利用微元思想的应用。

篇4:大学物理电磁学公式总结

定律和定理

1. 矢量叠加原理:任意一矢量 可看成其独立的分量 的和。即: =∑ (把式中 换成 、 、 、 、 、 就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。

2. 牛顿定律: =m (或 = );牛顿第三定律: ′= ;万有引力定律:

3. 动量定理: →动量守恒: 条件

4. 角动量定理: →角动量守恒: 条件

5. 动能原理: (比较势能定义式: )

6. 功能原理:A外+A非保内=ΔE→机械能守恒:ΔE=0条件A外+A非保内=0

7. 理想气体状态方程: 或P=nkT(n=N/V,k=R/N0)

8. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小都为kT/2。

克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。

实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学概率大的状态进行。亦即在孤立系统内部所发生的过程总是沿着无序性增大的方向进行。

9. 热力学第一定律:ΔE=Q+A

10.热力学第二定律: 孤立系统:ΔS>0

(熵增加原理)

11. 库仑定律:

(k=1/4πε0)

12. 高斯定理: (静电场是有源场)→无穷大平板:E=σ/2ε0

13. 环路定理: (静电场无旋,因此是保守场)

θ2

I

r P o R

θ1

I

14. 毕奥—沙伐尔定律:

直长载流导线:

无限长载流导线:

载流圆圈: ,圆弧:

电磁学

1. 定义:

= /q0 单位:N/C =V/m

B=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G)

① 和 :

=q( + × )洛仑兹公式

②电势:

电势差: 电动势: ( )

③电通量: 磁通量: 磁通链:ΦB=NφB单位:韦伯(Wb)

Θ ⊕

-q +q

S

④电偶极矩: =q 磁矩: =I =IS

⑤电容:C=q/U 单位:法拉(F)

乘自感:L=Ψ/I 单位:亨利(H)

乘互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)

⑥电流:I = ; 乘位移电流:ID =ε0 单位:安培(A)

⑦乘能流密度:

2. 实验定律

① 库仑定律: ②毕奥—沙伐尔定律: ③安培定律:d =I ×

④电磁感应定律:ε感= – 动生电动势:

感生电动势: ( i为感生电场)

乘⑤欧姆定律:U=IR( =ρ )其中ρ为电导率

3. 乘定理(麦克斯韦方程组)

电场的高斯定理: ( 静是有源场)

( 感是无源场)

磁场的高斯定理: ( 稳是无源场)

( 感是无源场)

电场的环路定理: (静电场无旋)

(感生电场有旋;变化的磁场产生感生电场)

安培环路定理: (稳恒磁场有旋)

(变化的电场产生感生磁场)

4. 常用公式

①无限长载流导线: 螺线管:B=nμ0I

② 带电粒子在匀强磁场中:半径 周期

磁矩在匀强磁场中:受力F=0;受力矩

③电容器储能:Wc= CU2 乘电场能量密度:ωe= ε0E2 电磁场能量密度:ω= ε0E2+ B2

乘电感储能:WL= LI2 乘磁场能量密度:ωB= B2 电磁场能流密度:S=ωV

④ 乘电磁波:C= =3.0×108m/s 在介质中V=C/n,频率f=ν=

波动学

篇5:大学物理电磁学公式总结

概念(2113定义和相关公式)

1. 位置矢量: ,其5261在直角坐标系中: ; 角位置:4102θ1653

2. 速度:平均速度: 速率: ( )角速度:

角速度与速度的关系:V=rω

3. 加速度: 或平均加速度: 角加速度:

在自然坐标系中 其中 (=rβ), (=r2 ω)

4. 力: =m (或 = ) 力矩: (大小:M=rFcosθ方向:右手螺旋法则)

5. 动量: ,角动量: (大小:L=rmvcosθ方向:右手螺旋法则)

6. 冲量: (= Δt);功: (气体对外做功:A=∫PdV)

mg(重力) → mgh

-kx(弹性力) → kx2/2

F= (万有引力) → =Ep

(静电力) →

7. 动能:mV2/2

8. 势能:A保= – ΔEp不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:

机械能:E=EK+EP

9. 热量: 其中:摩尔热容量C与过程有关,等容热容量Cv与等压热容量Cp之间的关系为:Cp= Cv+R

10. 压强:

11. 分子平均平动能: ;理想气体内能:

12. 麦克斯韦速率分布函数: (意义:在V附近单位速度间隔内的分子数所占比率)

13.平均速率:

方均根速率: ;最可几速率:

14. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)

15. 电场强度: = /q0 (对点电荷: )

16. 电势: (对点电荷 );电势能:Wa=qUa(A= –ΔW)

17. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/2

18. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。

大学物理知识点

大学物理教学计划

大学物理论文

大学物理实验报告

大学物理学习方法

大学物理的学习方法

大学物理论文范文3000字

大学物理教学新理念

大学物理多媒体教学策略论文

大学物理重力加速度的测定实验报告

大学物理电磁学知识点(共5篇)

欢迎下载DOC格式的大学物理电磁学知识点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档