下面是小编为大家整理的作轴对称图形的教学反思及建议(共含14篇),以供大家参考借鉴!同时,但愿您也能像本文投稿人“shenzhenbaoxian”一样,积极向本站投稿分享好文章。
作轴对称图形教学反思
一、从课堂反思
1、这堂课从生活中引入,激发了学生兴趣,内容较简单,学生容易接受,在上课的过程中更重视的是学生的合作学习,以及数学“建模”能力的培养。为下节课学习打下基础。
3、在课堂的第二个环节中,学生归纳出到线段两端的距离相等的点的集合是在线段的垂直平分线上。然后由特殊到一般,从线段到两点,让学生的思维得到一个提升。我想学生应该掌握了作对称轴的作法,然后将其进行推广到两点、角等其他轴对称图形,作出轴对称图形的对称轴以及成轴对称图形的对称轴。如练一练、说一说、一起去探索、挑战自我等等从中激起学生主动参与学习的兴趣,培养学生的动手能力,充分体现学生主体地位。从而达到培养学生学数学,用数学的.意识,养成探究问题,与同学合作的良好习惯。
2、上了这节课,我觉得上好一节课的因素很多,也发现了自己很多不足的地方,在平时上课的时候,对提问的形式和语言还嫌单一。我最大的体会就是,在现行的开放式的课堂中,关键是放的出去的同时要收的回来,可能是平时注入式的简单易行,或者是不大重视,上课中的语言的漏洞很多,在以后的教学中要多加揣摩和重视。
二、从教学方法反思
“差异导学”教学方法以“尊重差异”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体,同时让优生帮助后进生,达到共同学习,共同提高的目的。
三、从学生反馈反思
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但对从特殊到一般的实际应用上不能很好理解。对于稍难点的实际问题转化为数学式子表达有一定困难。这是我后面课堂要注意的地方,这对优生的培养很重要。
《作轴对称图形》教学反思
本课教学内容在课本的基础上作了一些调整,包括作线段的垂直平分线、作对称轴、作轴对称图形等内容。
最大的`优点是:两个重要的题型能够比较地理解和掌握,已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离相等;已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离和最小相等。
最难处理的问题是第二个典型应用的引导,作法为:作点A关于交直线l的对称点A′,连接A′B,交直线l于点P,证明这个点使距离之和最小很好启发引导,但是为什么能够想到这样作图,是比较难处理的问题,我在设计这个问题时,要求学生把直线想象成镜子(平面镜),由点A经过平面镜看点B,光线经过的路线就是最短的路径,因此,使我们选择了这样的作图方法。更难的应用,已知∠XOY,和角内部的点A,在OX、OY上分别作点B、C,使△ABC的周长最小。引导学生思考时,还是可以把OX、OY看成两面镜子,学生理解起来能够更便利些。
《作轴对称图形》的教学反思
一、从课堂反思
1、这堂课从常见的生活例子引入,激发了学生兴趣,练习内容也相对简单,学生容易接受,很快进入课堂节奏。在上课的过程中更重视的是学生的'合作学习,以及数学转化思想和“建模”能力的培养。为今后学习奠定基础。
2、在课堂的合作探究中,我设置了几个有铺垫作用的问题,从学生的回答情况来看引导效果比较明显,特别是学生能说出例题1和课前的引导有相同之处,也说明学生对本堂课的认真程度比较高。课堂中也给了学生充分的讨论交流时间,从而达到培养学生学数学,用数学的意识,养成探究问题,与同学合作的良好习惯。
3、通过这节课的教学让我懂得了只要给学生充分的思考时间和空间,一定能得到异想不到的结果,要求我们老师能够做到有的放矢。
二、从教学方法反思
“差异导学”教学方法以“尊重差异”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,使学生真正成为学习的主体,同时让优生帮助后进生,达到共同学习,共同提高的目的。
三、从学生反馈反思
这堂课学生能积极思考,认真学习,课后作业都能及时完成,特别是作图完成比较好。但对为什么这样作图就是最短的路线还是有部分学生不能理解。对于稍难点的实际问题转化为数学问题表达有一定困难。这是我后面课堂要注意的地方,这对优生的培养很重要。
作轴对称图形第1课时教学反思
本节课我们采用的是利用《学习单》的先学后教模式上课,先将《学习单》提前一天发给学生。在学生比较充分预习的基础上我们进行课堂教学,从预习情况来看优生基本可以完成简单的作图,如线段、三角形、四边形,包括对称点在对称轴上的简单图形等。中等学生只能画出简单的一些图形,但是对称点在对称轴上的'简单图形存在一定难度,中下学生只能做更简单的一些填空题。如果我们提前一天提示学生如何做一个点关于某直线的对称点,还有对称点在对称轴上怎么画等等。学生在预习中的效果会更好,上课的效也会更加好,特别是中下生更有预习的兴趣。
我们的教学设计是以学生自主探究为主,教师主要起引导作用,通过设计一系列的学生活动,一方面充分展示它们的预习成果,另一方面还要充分调动学生学习的主动性,使学生在动手过程中发现问题,提高学生观察发现总结问题的能力。特别是剪纸活动,使整个课堂气氛非常活跃,学生各显神通,纷纷展现自己的创新能力。在整个教学过程,师生很好的互动,教师设置了大量的问题,学生在动手操作的过程中探索问题的答案,提高自己解决问题的能力,并且对整节课的知识有更深刻的体会和记忆。不足的是这节课的图片欣赏比较多,教师在这一部分花费了较多的时间展示欣赏图片,以致后面操作的时间比较紧,而且由于学生操作的环节比较多,所以纪律方面有点难控制。同时给学生交流讨论的时间不够,有部分学生对做轴对称图形的关键之点理解不够。
随笔:要多给与学生表现的机会,每个学生都希望受到表扬,正因为学生有这种成功的欲望,所以他们都想争取机会展现自己,如果能制造更多的给学生表现的机会,学生的学习动力和兴趣会大大增加的。
12.2.1作轴对称图形
一、学习目标:
1、能作轴对称图形,能应用轴对称进行简单的图案设计,能用轴对称的知识解决相应的数学问题。
2、通过独立思考、交流讨论、展示质疑,发展学生的观察、归纳、想象及推理能力。
3、极度热情、享受成功、感受数学就在身边。
二、重点难点
难点:用轴对称知识解决相应的数学问题。
三、合作探究(同学合作,教师引导)
1、复习回顾:线段公理;垂直平分线的性质。
2、自己动手在一张半透明的纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置并重复几次,你又得到了什么?
归纳:
(1) 由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的 、________完全相同;
(2)新图形上的任意一点,都是原图形上某一点关于直线l的__________;
(3)连接任意一对对应点的线段被对称轴__________。
3、把图1补成关于直线l对称的图形
四、精讲精练
例1、如图2,如何在直线l上找一点P,使线段PA与PB的和最小?
练习:1、把下列各图补成以a为对称轴的轴对称图形。
2、把图中实线部分补成以虚线l为对称轴的轴对称图形,你会得到一只美丽的图案。
例2、要在河边修建一个水泵站,分别向张村、李庄送水(如图)。 修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。
练习1. 城北中学八⑵班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先到AO桌面上拿桔子,再到OB桌面上拿糖果,然后回到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短。
2. 开展你的想象,从一个或几个图形出发,利用轴对称或与平移进行组合,设计出一个图案,并与同学进行交流。
五、课堂小结:
归纳:
几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
六、作业:P45 1
反思:
探索勾股定理(第3课时)
第一勾股定理
总时:6时 使用人:
备时间:开学前第一周 上时间:第三周
题:1、1探 索勾股定理(第三时)
目标:
知识与技能目标:
1.通过对几种常见的勾股定理验证方法的分析和欣赏,理解数学知识之间的内在联系;
2.经历综合运 用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
过程与方法目标:
1.经历不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的化价值;
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题的方法与经验。
情感与态度目标:
1通过丰富有趣的拼图活动增强对数学学习的兴趣;通过探究总结活动,让学生获得成功的体 验和克服困难的经历,增进数学学习的信心;在合作学习活动中发展学生的合作交流的意识和能力。
重点:
1.通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
2.通过拼图验证勾股定理的过程,使学习获得一些研究问题与合作交流的方法与经验。
教学难点:
1.利用“五巧板”拼出不同图形进行验证勾股定理。
2.利用数形结合的方法验证勾股定理。
教学准备:
剪刀、双面胶、硬纸板、直尺(或三角板 )、铅笔、多媒体。
三、教学过程
第一环节 复习引入(3分钟,师生问答)
问题:1、勾股定理的内容?
2、在直角三角形中,已知:∠C=900 a = 5,b = 12 求c=?
第二环节 验证过程的分析与欣赏 (10分钟,分组合作交流)
内容:教师引导学生对收集的验证方法进行归类整理:
验证方法一:剪 切、拼接。学生利用手中的纸板、剪刀、分组分工,合作进行,全班交流
验证方法二:制作“青朱出入图”,仿造教材12页。
第三环节 尝试拼图,验证定理(12分钟,动手操作,合作探究)
内容:五巧板的制作
教师介绍“五巧板”的制作方法,学生拿出准备好的硬纸板制作“五巧板”。
步骤:做一个Rt△ABC,以斜边AB为边向内做正方形ABDE, 并在正方形内画图,使DF⊥BI,CG=BC,HG⊥AC, 这样就把正方形A BDE分成五部分①②③④⑤。
沿这些线剪开,就得了一幅五巧板。
1.利用五巧板拼“青朱出入图 ”。
2.取两幅五巧板,将其中的一幅拼成一个以C为边长的正方形,将另外一 幅五巧板拼成两个边长分别为a、b的正方形,你能拼出吗?
3.用上面的两幅五巧 板,还可拼出其它图形,你能验证勾股定理吗?
4.利用五巧板还能通过怎样拼图验证勾股定理?
可能的拼图方案:
第四环节练习提升
1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2
2.一个直角三角形的斜边为20cm ,且两 直角边长度比为3:4,求两直角边的长。
第五环节堂小 结(3分钟,师生对答,共同总结)
内容:教师提问:
1.这一节我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
第六环节 布置作业
内容:
1、教材15页问题解决1
2、创新设计
要求:A组(学优生):1、2、
B组(中等生):1、2
C组(后三分之一生):2
能得到直角三角形吗
第一勾股定理
总时:6时
备时间:开学前第一周 上时间:第三周
题:1、2能得到直角三角形吗
目标
1、知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条判断三 角形是否是直角三角形。
2、过程与方法
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
3、情感态度与价值观
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
重点:理解勾股定理逆定理的具体内容。
教学难点:应用勾股定理逆定理解决实际问题
教学准备:多媒体
教学过程:
第一环节:创设情境,引入新(3分钟,教师设疑,学生猜想)
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
第二环节:探索发现勾股定理逆定理(15分钟,学生分组探究)
活动1:探究
下面有三组数,分别是一个三角形的三边长 ,
①5,12,13;
②7,24,25;
③8,15,17;
并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
活动2:归纳
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的 三个 正整数,称为勾股数。
活动3:总结
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前 面学习勾股定理有哪 些异 同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
第三环节:勾股定理逆定理的简单应用(7分钟,学生合作探究)
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 15 0 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
第四环节:巩固练习(10分钟,学生先独立完成,后全班交流)
1 .一个零的形状如图2所示,按规定这个零中 都应是直角。工人师傅量得这个零各边尺寸如图3所示,这个零符合要求吗?
解答: 符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
第五环节:堂小结(3分钟,师生对答,共同总结)
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
第六 环节:布置作业(2分钟,学生分别记录)
内容:
1、本习题1.4第1,2,4题。
2、创新设计
要求:A组(学优生):1、2、
B组(中等生):1、2
C组(后三分之一生):2
板书设计:
能得到直角三角形吗
引入———— 例题 练习
逆定理————
平面直角坐标系(1)
第五 位置的确定
总时:7时 使用人:
备时间:第八周 上时间:第十周
第3时:5、2平面直角坐标系(1)
目标
知识与技能
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;
2.认识并能画出平面直角坐标系;
3.能在给定的直角坐标系中,由点的位置写出它的坐标。
过程与方法
1.通过画坐标系、由点找坐标等过程,发展学生的数形结 合意识、合作交流意识;
2.通过对一些点的坐标进行 观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
情感态度与价值观
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
重点:1.理解平面直角坐标系的有关知识;
2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;
3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:1.横(或纵)坐标相同的点的连线与坐标轴 的关系的探究;
2.坐标轴上点的坐标有什么特点的总结。
教学设计
第一环节 感受生活中的情境,导入新(10分钟,学生观察图形,感受生活中的数学)
同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?
(3)如果 以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节,我们已经学习了许多确定位置的 方法,这个问题中,大家看用哪种方法比较合适?
第二环节 分类讨论,探索新知(15分钟,学生小组探究,全班交流)
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
学生自学本,理解上述概念。
2.例题讲解
(出示投影)例1
例1写出图中的多边形AB CDEF各顶点的坐标。
3.想一想
在例1中,
(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?
(2)线段CE位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
由B(0,-3),C(3,- 3)可以 看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴), 垂直于纵轴(y轴)。
第三环节 学有所用.(10分钟,学生独立完成,全班交流)
补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。
(第1题) (第2题)
2.如右图,求出A,B,C,D,E,F的坐标。
第四环节 感悟与收获(5分钟,教师引导学生整理知识框架)
1.认识并能画出平面直角坐标系。
2.在给定的直角坐标系 中,由点的位置写出它的坐标。
3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。
4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。
5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。
6.各个象限内 的点的坐标特征是:第一象限(+,+)第二象限(-,+),
第三象限(-,-)第四象限(+,-)。
第五环节 布置作业
习题5.3
A组(优等生)1、2、3
B组(中等生)1、2
C组(后三分之一生)1、2
教学反思
全等三角形全章教案
j.Co M
13.1全等三角形
教学目标:1了解全等形及全等三角形的的概念;
2 理解全等三角形的性质
3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,
4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣
重点:探究全等三角形的性质
难点:掌握两个全等三角形的对应边,对应角
教学过程:
观察下列图案,指出这些图案中中形状与大小相同的图形
问题:你还能举出生活中一些实际例子吗?
这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形
能够完全重合的两个三角形叫做全等三角形
思考:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用 表示,读作“全等于”
两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如 全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合
的角叫做对应角
思考:如上图,13。1-1 ,对应边有什么关系?对应角呢?
全等三角形性质:
全等三角形的对应边相等;
全等三角形的对应角相等。
思考:
(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
(2)将 沿直线BC平移,得到 ,说出你得到的结论,说明理由?
(3)如图, AB与AC,AD与AE是对应边,已知: ,求 的大小。
小结:
作业:P92—1,2,3
课题:13.2 三角形全等的条件(1)
教学目标
①经历探索三角形全等条件的过程,利用操作、归纳获得数学结论的过程.
②掌握三角形全等的“边边边”条件,了解三角形的稳定性.
③通过对问题的共同探讨,培养学生的协作精神.
教学难点
三角形全等条件的探索过程.
一、复习过程,引入新知
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
二、创设情境,提出问题
根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
三、建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?
让学生按照下面给出的条件作出三角形.
(1)三角形的两个角分别是30°、50°.
(2)三角形的两条边分别是4cm,6cm.
(3)三角形的一个角为30°,—条边为3cm.
再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.
四、应用新知,体验成功
实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
鼓励学生举出生活中的实例.
给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.
让学生独立思考后口头表达理由,由教师板演推理过程.
例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:
①以A为圆心画弧,分别交角的两边于点B和点C;
②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;
③画射线AD.
AD就是∠BAC的平分线.你能说明该画法正确的理由吗?
例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.
五、巩固练习
教科书第96页的思考及练习.
六、反思小结
回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.
七、布置作业
1.必做题:教科书第103页习题13.2中的第1、2题.
2.选做题:教科书第104页第9题.
课题:13.2 三角形全等的条件(2)
教学目标
①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.
②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
③通过对问题的共同探讨,培养学生的协作精神.
教学难点
指导学生分析问题,寻找判定三角形全等的条件.
知识重点
应用“边角边”证明两个三角形全等,进而得出线段或角相等.
教学过程(师生活动)
一、创设情境,引入课题
多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.
教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等.
二、交流对话,探求新知
根据前面的操作,鼓励学生用自己的语言来规律:
两边和它们的夹角对应相等的两个三角形全等.(SAS)
补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.
三、应用新知,体验成功
出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
让学生充分思考后,书写推理过程,并说明每一步的依据.
(若学生不能顺利得到证明思路,教师也可作如下分析:
要想证AB=DE,
只需证△ABC≌△DEC
△ABC与△DEC全等的条件现有……还需要……)
明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.
补充例题:
1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE
求证: △ABD≌△ACE
证明:∵∠BAC=∠DAE(已知)
∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD
∴∠BAD=∠CAE
在△ABD与△ACE
AB=AC(已知)
∠BAD= ∠CAE (已证)
AD=AE(已知)
∴△ABD≌△ACE(SAS)
思考:
求证:1.BD=CE
2. ∠B= ∠C
3. ∠ADB= ∠AEC
变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.
求证: ⑴ △DAC≌△EAB
1.BE=DC
2.∠B= ∠ C
3.∠ D= ∠ E
4.BE⊥CD
四、再次探究,释解疑惑
出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.
教师演示:方法(一)教科书98页图13.2-7.
方法(二)通过画图,让学生更直观地获得结论.
五、巩固练习
教科书第99页,练习(1)(2).
六、小结提高
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.
七、布置作业
1.必做题:教科书第104页,习题13.2第3、4题.
2.选做题:教科书第105页第10题.
3.备选题:
(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.
(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.
课题: 13.2 三角形全等的条件(3)
教学目标
①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的,培养反思的习惯,培养理性思维.
③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.
教学重点
理解,掌握三角形全等的条件:“ASA”“AAS”.
教学难点
探究出“ASA”“AAS”以及它们的应用.
教学过程(师生活动)
创设情境
复习:
师:我们已经知道,三角形全等的判定条件有哪些?
生:“SSS”“SAS”
师:那除了这两个条件,满足另一些条件的两个三角形是否
也可能全等呢?今天我们就来探究三角形全等的另一些条件。
探究新知:
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
的.原貌吗?
1.师:我们先来探究第一种情况.(课件出示“探究5……”)
(1)探究5
先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
师:怎样画出△A'B'C'?先自己独立思考,动手画一画。
在画的过程中若遇到不能解决的问题.可小组合作交流解决.
生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决……)……
(2)全班讨论交流
师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步)
你是这样画的吗?
师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等.
生:(剪△A'B'C',与△ABC作比较……)
师:全等吗?
生:全等.
师:这个探究结果反映了什么规律?试着说说你的发现.
生1:我发现……
生2:……
生3:两角和它们的夹边对应相等的两个三角形全等.
师:这条件可以简写成“角边角”或“ASA”.至此,
我们又增加了—种判别三角形全等的方法.特别应
注意,“边”必须是“两角的夹边”.
练习:已知:如图,AB=A’C,∠A=∠A’,∠B=∠C
求证:△ABE≌ △A’CD
例1.已知:点D在AB上,点E在AC上,BE和CD
相交于点O,AB=AC,∠B=∠C。 求证:BD=CE
2.探究6
师:我们再看看下面的条件:
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
师:看已知条什,能否用“角边角”条件证明.
生独立思考,探究……再小组合作完成.
师:你是怎么证明的?(让小组派代表上台汇报)
小组1:….
小组2:……投影仪展示学生证明过程
(根据学生的不同探究结果,进行不同的引导)
师:从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律?
生l:两个角和其中一条边对应相等的两个三角形全等.
生2:在"ASA”中,“边”必须是“两角的夹边”,而这里,“边”可以是“其中一个角的对边”.
师:非常好,这里的“边”是“其中一个角的对边”.那怎样更完整的表述这一规律?
生1:两个角和其中一个角的对边对应相等的两个三角形全等.
师:生1很好,这条件我们可以简写成“角角边”或“AAS”,又增加了判定两个三角形全等的一个条件.
强调“AAS”中的边是“其中一个角的对边”.
多让几个学生描述,进一步培养归纳、表达的能力.
例2.教材101页1题。
师:从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了.
探究7:
(1)三角对应相等的两个三角形全等吗?(课件出示题目)
师:想想,怎样来探究这个问题?
生1:……
生2:….
引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.
师:这一规律我们可以怎样表达?
生1:….新 课 标 第 一 网
生2:三个角对应相等的两个三角形不一定全等.
(2)师:说得非常好.现在我们来小结一下;判定两个三角形全等我们已有了哪些方法?
生:SSS SAS ASA AAS
小结提高
师:这节课通过对两个三角形全等条件的进一步探究,你有什么收获?
巩固练习
教科书第101页,练习2.
布置作业
1。必做题:教科书第103页习题13.2第6、11题
2.如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?
课题: 13.2 三角形全等的条件(4)
教学目标
①探索并掌握两个直角三角形全等的条件:HL,并能应用它判别两个直角三角形是否全等.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.
③提高应用数学的意识.
教学重点
理解,掌握三角形全等的条件:HL.
教学过程:
提问:
1、判定两个三角形全等方法有: , , , 。
创设情境:
(显示图片),舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角. (AAS)
方法二:测量没遮住的一条直角边和一个对应的锐角. (ASA)或(AAS)
⑵ 如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
下面让我们一起来验证这个结论。
新课:
已知线段a、c(a?c)和一个直角α,利用尺规作一个Rt△ABC,使∠C= ∠ α ,CB=a,AB=c.
想一想,怎样画呢?
按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°;
⑵ 在射线CM上截取线段CB=a
⑶ 以B为圆心,C为半径画弧,交射线CN于点A;
⑷ 连接AB.
⑴ △ABC就是所求作的三角形吗?
⑵ 剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
直角三角形全等的条件
斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”.
想一想
你能够用几种方法说明两个直角三角形全等?
直角三角形是特殊的三角形,所以不仅有一般
三角形判定全等的方法:SAS、ASA、AAS、SSS,
还有直角三角形特殊的判定方法——“HL”.
练一练:
1.如图,两根长度为12米的绳子,一端系在旗杆上,
另一端分别固定在地面两个木桩上,两个木桩离旗
杆底部的距离相等吗?请说明你的理由。
2.如图,有两个长度相同的滑梯,左边滑梯的高度AC
与右边滑梯水平方向的长度DF相等,两个滑梯的倾
斜角∠ABC和∠DFE的大小有什么关系?
解:∠ABC+∠DFE=90°.理由如下:
在Rt△ABC和Rt△DEF中,
则
BC=EF,
AC=DF .
∴ Rt△ABC≌Rt△DEF (HL).
∴∠ABC=∠DEF
(全等三角形对应角相等).
又 ∠DEF+∠DFE=90°,
∴∠ABC+∠DFE=90°.
小结:这节课你有什么收获呢?与你的同伴进行交流
作业:104页7、8。
13.3 角的平分线的性质
13.3.1 角的平分线的性质(一)
教学目标
(一)教学知识点
角平分线的画法.
(二)能力训练要求
1.应用三角形全等的知识,解释角平分线的原理.
2.会用尺规作一个已知角的平分线.
(三)情感与价值观要求
在利用尺规作图的过程中,培养学生动手操作能力与探索精神.
教学重点
利用尺规作已知角的平分线.
教学难点
角的平分线的作图方法的提炼.
教学方法
讲练结合法.
教具准备
多媒体课件(或投影).
教学过程
Ⅰ.提出问题,创设情境
问题1:三角形中有哪些重要线段.
问题2:你能作出这些线段吗?
[生甲]三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.
过三角形的顶点作这个顶点的对边的垂线,交对边于一点,顶点与垂足的连线就是这个三角形的高.
取三角形一边的中点,此中点与这个边对应顶点的连线就是这条边的中线.
用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.
[生乙]我不同意你对角平分线的描述,三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.
[师]你补充得很好.数学是一门严密性很强的学科,你的这种精神值得我们学习.
如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?
Ⅱ.导入新课
[生]我记得在学直角三角形全等的条件时做过这样一个题:
在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.
求证:∠MOC=∠NOC.
通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.
受这个题的启示,我们能不能这样做:
在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.
[师]他这个方案可行吗?
(学生思考、讨论后,统一思想,认为可行)新课标第一网
[师]这位同学不仅给了操作方法,而且还讲明了操作原理.这种学以致用,联想迁移的学习方法值得大家借鉴.
议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
教师活动:
播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.
学生活动:
观看多媒体课件,讨论操作原理.
[生1]要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.
[生2]∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.
[生3]我们看看条件够不够.
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.
即射线AC就是∠DAB的平分线.
[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.
老师再提出问题:
通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作.
(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)
讨论结果展示:
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于 MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)
学生讨论结果总结:
1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一角∠AOB,作它的平分线.
Ⅲ.随堂练习
课本P106练习.
练后总结:
平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.
Ⅳ.课时小结新课标第一网
本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步温故而知新是一种很好的学习方法.
Ⅴ.课后作业
1.课本P108习题13.2─1、2.
2.预习课本P106~107内容.
13.3.2 角的平分线的性质(二)
教学目标
(一)教学知识点
角的平分线的性质
(二)能力训练要求
1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
2.能应用这两个性质解决一些简单的实际问题.
(三)情感与价值观要求
通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.
教学重点
角平分线的性质及其应用.
教学难点
灵活应用两个性质解决问题.
教学方法
探索、归纳的方法.
教具准备
剪刀、折纸、投影片.
教学过程
Ⅰ.创设情境,引入新课
[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.
[师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.
Ⅱ.导入新课
角平分线的性质即已知角的平分线,能推出什么样的结论.
操作:
1.折出如图所示的折痕PD、PE.
2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.
画一画:
按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.
[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.
[生甲]噢,对于,我知道了.
[师]同学甲,你再做一遍加深一下印象.
问题1:你能用文字语言叙述所画图形的性质吗?
[生]角平分线上的点到角的两边的距离相等.
问题2:(出示投影片)
能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
学生通过讨论作出下列概括:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
于是我们得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
[师]这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?
[生]这两个性质已知条件和所推出的结论可以互换.
[师]对,这是自己的语言,这一点在数学上叫“互逆性”.
下面请同学们思考一个问题.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:0)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
(学生以小组为单位讨论,教师可深入到学生中,及时引导)
讨论结果展示:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思.作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.
第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.
总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.
[例]如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题.
证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
Ⅲ.随堂练习
1.课本P107练习.
2.课本P108习题13.3─2.
在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.
Ⅳ.课时小结
今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.
Ⅴ.课后作业
课本习题13.3─3、4、5题.
初二数学上册第七章二元一次方程组教案
第七 二元一次方程组
总时:8时
备时间:第九周 上时间:第十三周
第7时:7、6二元一次方程与一次函数(1)
目标
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一 次方程组和对应的两条直线之间的 关系;
(3)掌握二元一次方程组的图像解法.
过程与方法
(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
情感与态度
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
教学难点
数形结合和数学转化的思想意识.
教学准备
教具:多媒体、三角板.
学具:铅笔、直尺、练习本、坐标纸.
教学过程
第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程 .
第二环节 自主探索方程组的解与图像之间的关系(10分钟,教师引导学 生解决)
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数 的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节 典型例题 (10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
第四环节 反馈练习(10分钟,学生解决全班交流)
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(—2, 0),且与 轴分别交于B,C两点,则 的面积为( ).
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
第五环节 堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一 次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上 的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交 点坐标是对应的方程组的解;
3.解二元一次 方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节 作业布置
习题7.7A组(优等生)1、2、3 B组(中等生)1、2 C组1、2
附: 板书设计
六、教学反思
探索勾股定理(第1课时)
第一勾股定理
总时:6时 执笔人 使用人:
备时间:开学前第一周 上时间:第三周
题:1、1探索勾股定理(第一时)
教 学目标
1、知识与技能目标
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2、过程与方法
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
3、情感态度与价值观
在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习.
教学重点:了结勾股定理的由,并能用它解决一些简单的问题。
教学难点:勾股定理的发现
教学准备:多媒体
教学过程:
第一环节:创设情境,引入新(3分钟,学生观察、欣赏)
内容:世界数学家大会在我国北京召开,
投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”
的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题)
第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:
(2)引导学生从面积角度观察图形:
问:你能发现各图中三个正 方形的面 积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2.探究 活动二:
由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A 的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
3.议一议:
内容:(1)你能用直角三角形的边长 、、表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理(gou-gu theorem):
如果直角三角形两直角边长分别为 、,斜边长为 ,那么
即直角三角形两直角边的平方和等于斜边的平方.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.
(在西方称为毕达哥拉斯定理)
第三环节: 勾股定理的简单应用(7分钟,学生合作探究)
内容:
例 如图所示,一棵大树在一次强烈台风中于离
地面10m处折断倒下,
树顶落在离树根24m处. 大树在折断之前高多少?
(教师板演解题过程)
第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)
1、列图形中未知正方形的面积或未知边的长度:
2、生活中的应用:
小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
第五环节:堂小结(3分钟,师生对答,共同总结)
内容:教师提问:
1.这一节我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .
2.方法:① 观察—探索—猜想—验证—归纳—应用;
② 面积法;
③ “割、补、拼、接”法.
3.思想:① 特殊—一般—特殊;
② 数形结合思想.
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.教科书习题1.1;
2.《读一读》——勾股世界;
3.观察下图,探究图中三角形的三边长是否满足 .
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:见电子屏幕
教学反思:
对称是基本的图形变换,学习空间和图形知识的基础,能够帮助学生建立空间观念。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学
1、会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。
2、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。
3、小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
4、是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。
5、生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折:
1、过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
2、是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
1、是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。
2、次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
3、节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
在最近的听课活动中,恰巧连续听了几节关于轴对称图形的教学研讨课。以下就听课后的几点思考整理出来,以便大家同时讨论、批判。
一、空间与图形的教学应注重直观感知和更加贴近生活
“数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……”新课标的这一理念强调了数学与生活紧密联系。在教学轴对称图形时,应注意让学生联系自己的生活实际,寻找生活中轴对称图形的踪影,让他们感受到数学与生活的密切联系,学会用数学的眼光看待周围事物,从中体验数学的价值。
轴对称图形有一节课的知识目标是:探究平面图形中哪一些是轴对称图形,哪一些不是轴对称图形?为了解决这一难点,教师发给学生各种有代表性的平面图形,放手让他们自主去解决。学生通过亲自去折一折,能够很快的辨别出来是还是不是。又趁机让学生再次对这些图形按照对称轴的条数进行分类,这样,学生对轴对称图形又有了新的认识。因为三角形、梯形、平行四边形是这一部分最容易出错的地方,所以又指导学生对这些图形进行再次总结。这一过程的自主学习,可以随机出示几道判断题。对于知识点的处理,要让学生亲自去感受、去认知、去体验,学生将会对知识掌握得更加牢固。
另外可以促使学生动手做“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪。当学生有不同的剪法时,可引导学生比一比:谁的剪法好?说说怎样剪,剪出来的图形才能对称?这样,让学生在具体实践活动中很自然地引出“对称轴”的概念。这一活动的开展,以激起学生动手操作的兴趣和欲望为前提,将观察、思考、操作有机地结合,让学生充分感知对称图形及“对称轴”的概念。
轴对称图形在现实生活中到处可见,它的实际应用与美的.感受到处可见。课下,为了让学生进一步体验这种美,最好让他们做一件轴对称图形的物体,将学到的知识再次融入到生活中。
二、有形象直观转为抽象概念要注意引导方法
教师的语言引导很重要,语言的精确性是引导学生学习的关键。
如有位教师在学生初步感知了抽对称图形的特征之后,让学生自己总结概念。学生在讨论之后说:一个(长方型、一张纸、一片叶)沿着一条直线对折,两侧的图形能够完全重合。这样的图形就是轴对称图形。而教师的本意是想让学生说“一个图形”,可由于引导语言发生错误,(这位老师在课堂上一直问学生手中拿的是什么,学生就说是长方形、树叶,没人说是一个图形,老师就一直逼问。)学生怎么也拗不过来,不知道老师想要什么样的结果,导致再无人敢发言。随后的半节课,出现了很尴尬的局面,而教师也不知该怎么调整,导致教学计划未能顺利地完成。由此说明课堂教学语言的精确性直接关系到知识的生成,如果教师不注意训练自己的语言,很可能导致一节课的失败。
又如另一位教师由于准备不充分,对等腰三角形是否是轴对称图形根本就没考虑在教学内容中。当学生讲到等腰三角形是不是轴对称图形时,由于在学生的学具中根本就没准备。于是,教师就在黑板上用小尺画了一个等腰三角形来讲解。其实,完全没有必要动手画。因为完全可以让学生拿出已经准备好的完全相同的两个直角三角形,拼成一个等腰三角形来演示给学生看。这样,既直观易懂,又省事。
三、小组合作要到位,应充分体现合作学习的优越性
合作学习不是简单地把学生分成几个小组,不能把小组合作停留在表面形式上。数学课堂教学中,有很多知识是不需要教师精讲的,应充分挖掘学生的潜能,让学生相互合作,互帮互学。教师只要适时给学生一些点拨,帮助学生去挖掘知识的深度和广度,在具体的数学教学过程中关注更多的深层次的问题。
如一节“轴对称图形”的小组合作学习的课,练习时,教师给学生设计了一道具有开放性的题目:以小组为单位,让每个学生发挥想象,剪出一些轴对称图形。这个合作题目我们细想一下,是很能体现数学学习的合作学习的。然而教师布置后,学生在事先准备的彩纸上剪出一些轴对称图形,基本上是独立完成的,小组之间几乎没有交流,基本停留在独立学习的层次上,没有真正地讨论和合作,没有发挥小组合作的优势,学习效果没能真正代表本小组的水平。而且在汇报时,教师只是让学生展示了一下自己的作品,没有进行知识的总结和挖掘。仔细思考一下,如果让每个小组利用所剪的轴对称图形拼成一幅美丽的画。不是更能体现合作学习?合作过程中可以让组长分配,学生互帮互学,汇报时说出自己是怎样剪的,正好复习了轴对称图形的特征。
那么教者这样处理,其原因何在?追其根源,主要是教师片面地追求课堂小组合作学习这一形式,对小组合作学习的目的、时机和过程没有进行认真设计,学生的合作流于形式,合作意识不强,只要有疑问,无论难易,甚至一些毫无讨论价值的问题都要在小组内讨论。合作又没有时间保证,有时学生还没进入状态,小组合作学习就在老师的要求下结束了。教师在合作学习中不是个引导者而是个仲裁者,教师只是在按照既定的教学计划和教学设计,把学生往事先设计好的框架里赶。这是典型的应付式、被动式讨论,小组合作学习缺乏深层的交流和碰撞。
本节课初步教学对称现象和轴对称图形。通过学习,意在让学生体会生活中的对称现象,初步认识轴对称图形,并能根据其特征准确进行判断,同时在活动中让学生领略轴对称图形的美妙和神奇,感悟数学与生活的联系。三年级孩子第一次接触轴对称图形,四年级和中学还将进一N!步进行研究,对三年级孩子来说,这初始的第一课,如何激发学生的学习需求,把握好教学的尺度,提升学生的数学素养,是我们在备课时,着力思考和深入研究的问题。
一、把握知识的生成点。
虽然本节课是孩子第一次接触轴对称图形,但是对于对称现象,学生却并不陌生,再加上从幼儿开始,学生就有机会进行折纸、剪纸等活动,有时也会用“对称”来描述一些现象,因此我们认识到学生学习轴对称图形有着丰厚的生活经验。但物体的对称特点与轴对称图形是两个不同的概念。“对称性”是某些物体的特征,“轴对称”是部分平面图形的特征。正如天安门是对称的物体,画下来的天安门图形才是轴对称图形,天安门这个物体不是轴对称图形。因此找准知识的生长点,帮助学生正确地建立相关概念,并能主动灵活地应用概念进行判断分析,是本节课的重点所在。
我们在备课的过程中,充分尊重学生的基础性资源,从生活中收集了大量的对称物体,如人民大会堂、故宫、巴黎埃菲尔铁塔、伦敦塔桥、蝴蝶、奖杯、向日葵……让学生在静静的欣赏中,在同类物体的观察比对中,主动发现它们的共同特征:即这些物体都是对称的。在学生充分认识了生活中的对称现象之后,我们又通过多媒体课件的演示,将生活中常见的一些物体画了下来,让学生真切地体验从立体到平面,从具体到抽象的过程。这样的设计充分调动了学生的经验储备,符合学生的认知规律,学生在熟悉的生活场景中体悟到,今天这堂课研究的不再是生活中对称现象,而是平面图形的对称。
“对折”是“轴对称图形”的研究方法,以往教学中,教师一般都会直接要求同学进行下列操作活动:请你们先把图形对折,再观察一下这些图形对折后有什么特点。这样的做法显然忽视了学生学习的主动性,漠视了学生学习的心理需求,如果没有要动手折一折的强烈愿望,学生只能处在被动接受的状态,因为老师要我们折,所以我要折一折,至于为什么折,学生是茫然而盲目的。怎样才能激发学生主动学习的欲望?课堂上,我们先引导学生回顾:我们以前学过不少平面图形,像长方形、正方形等,在研究这些平面图形的时候,我们都采用了哪些研究方法?借助学生对平面图形已有的研究经验,调动学生的学习方法储备,促使他们主动寻求既有的研究方法解决问题,提出本节课的研究方法――“对折”,这样的处理使接下来学生的操作活动,目标变得清晰起了,同学们带着明确的方法和活动目标进行活动,感受学习材料的特征,习得知识的过程自然而流畅,凸显了数学学习方法价值。
对于判断常见平面图形是不是轴对称图形,我们也采用了先自由发表想法,再在意见产生分歧时,及时跟进:怎样才能知道它们中到底哪些是轴对称图形呢?由此,学生主动的利用轴对称图形的特征,寻求解决问题的方法,学习活动的开展完全顺应了学生学习的实际需求,学生学得深入而快乐。
二、找准研究的聚焦点。
轴对称图形的教学,要求学生利用初步的概念进行判断,通过判断哪些图形是轴对称图形,哪些图形不是轴对称图形,加强对概念的理解,因此课堂上不可避免的会涉及到一系列学过的平面图形:如长方形、正三角形、平行四边形、等腰梯形等,这里只对图形个案,即只对这个三角形、这个梯形、这个平行四边形和这个长方形进行判断,不对一类图形的整体进行判断。但学生在判断时总是会说“三角形是轴对称图形”、“平行四边形不是轴对称图形”等诸如此类并不科学的结论,教师面对这种情况,也总是只能在学生得出结论后一再强调:要说“这个三角形”是轴对称图形,“这个平行四边形”不是轴对称图形,更有甚者,会出示各种类型的三角形和平行四边形,让学生判断,从而归纳出:不是所有的三角形都是轴对称图形,也不是所有的平行四边形都不是轴对称图形。这样的处理常常会让学生摸不着头脑,产生疑惑,无形之中增加了学习的难度,拔高了学习的要求。怎样避免这样的尴尬?课上我们给每个平面图形都注上了序号,学生在猜想判断、研究交流时,就自然而然地从关注图形本身是不是轴对称图形,聚焦到了判断轴对称图形的方法和得出结论的过程上来,这样的处理看似简单实则经过了精心的设计,序号的使用既避免了让整堂课的教学目标被拔高,也凸显了三年级同学学习轴对称图形的价值和意义。
三、关注能力的提升点。
数学课仅仅有生活味是远远不够的,做足“数学味”才是数学课的根本。
爱因斯坦曾经指出:“一个人的智力发展和他形成概念的方法,在很大程度上是取决于语言的。”虽然本课是轴对称图形的初始学习阶段,对孩子的要求比较低,但是如果在判断轴对称图形的过程中,只要求学生简单的凭借感觉判断,显然并没有着眼于发展孩子数学思维能力的提升。因此,我们在备课过程中,总是尽量多的考虑学生语言表达所需要的支架与拐棍。课上,我们着力营造出分享交流的平台,让合作小组在操作活动后,充分展示出自己的想法,通过教师点评、生生互评的方式,鼓励学生将思维过程用外化的语言来表达,课堂上预留充分的时间和空间让学生阐述观点,提出困惑,当学生的数学表达不顺畅时,我们适时采用同伴互助、教师点拨的方式,努力实现学生数学素养的提升,而课堂也因为丰厚的数学表达,绽放出浓浓的“数学味”。
案例背景
新课标倡导:数学课堂的内容一定要充分考虑数学发展过程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数学与教科书上的数学的联系,使生活与数学融为一体。只有当学习材料和学生的生活经验相联系时,学生对学习才最感兴趣。这样看来,丰富多彩的现实世界应当是数学学习的背景,在平时教学中,笔者比较注重在课堂上有意识地渗透生活味,让学生把所学到的知识与生活建立起联系,并把所学的知识运用到生活中去,从而让学生慢慢明白、感悟生活中其实有很多的数学问题,可以用我们所学到的数学知识去解释和解决。
学生对平面图形已经有了较为系统的认识。本节课主要让学生通过动手操作,认识轴对称图形。学生对轴对称图形的认识,并不是从概念中获得的,而是要求学生能够通过自己的动手实践与操作,在自主研究的基础上归纳、了解轴对称图形以及对称轴的概念,而这需要通过大量的观察以及动手操作才能达到目的,因此必须加强学生自己的操作与实践。
设计意图
针对小学生年龄偏低,抽象思维能力还相对较弱的实际情况,我一开始就借助一幅儿童非常熟悉而又滑稽的大头娃娃的头像,通过“眼睛的不对称,让学生想办法使其变成对称”这样一个过程,使学生在游戏中初步感知“轴对称图形”,并形成表象。这样的过程做到了“寓知识于游戏,化抽象为形象,变空洞为具体”,使学生的学习具有形象性、趣味性。
教学片断
(一)教学轴对称图形的含义:
师:下面请同学们拿出准备好的纸,先对折一下,然后随你剪一个什么图形,再展开,并观察一下,看你有什么发现。
(学生自主地剪纸,同桌间讨论各自的发现。)
师:谁愿意把自己剪的图形展示给大家看看。
(学生纷纷上来把剪的图形放到展示平台上。)
师:同学们在这么短的时间里居然剪彩出了这么多美丽的图形,真不简单!那谁能够说说这些图形的共同点吗?
生1:这些图形的左右两边都是对称的。
生2:这些图形沿着一条直线对折,两侧的图形都能完全重合。
师:讲得真好,那现在谁能告诉老师什么叫轴对称图形吗?
生:一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。
师:讲得真棒!那你能告诉我中间的这条“折痕”叫什么吗?
生:折痕所在的这条直线叫做对称轴。
师:讲得太好了,我们一道把这位同学刚才讲的话齐读一遍。
(教师出示概念的投影,学生齐读。)
设计意图:在这个环节里,我把美术课中的手工剪纸运用到数学课堂教学中来,学生通过自己动脑、随意剪纸,各有创意地剪出了不同的图案,既增强了学生的学习兴趣,又培养了学生的创新能力,而就在学生剪纸“玩”的过程中,学会了轴对称图形以及对称轴的概念。
(二)研究生活中树叶的对称情况,加深理解:
师:刚才我们通过自己的探索与实践,知道了什么叫轴对称图形。现在我们把课前准备的树叶拿出来,小组讨论一下,按今天所学把它们分成两大类,好吗?
(学生讨论,把带来的树叶分成轴对称图形和不是轴对称图形的两大类。)
师:谁愿意把“轴对称树叶”放到展示平台上展示给大家看看,并说一下你的想法。
(学生上讲台展示“轴对称树叶”,并说理由。)
设计意图:在这个环节里,我让学生把随手可得、极为常见的生活中的树叶作为研究的对象,通过学生的合作、研究,让学生在加深理解所学“轴对称图形”这一知识的同时,增强了学生的学习兴趣,而且渗透了“生活中处处有数学的”数学思想,很好地体现了新课程理念。
案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化----关注学生的生活世界,学习内容更贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“折纸”“剪纸”是很感兴趣的内容,因此,也具有现实性,即回归生活。让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。
在学生的学习过程中,教师的适时教诲和适时表扬,令学生的心灵得以纯洁,精神得以振奋,行为得以矫正,这样,可以让他们中每个人都有独特的作用,可以让他们正确评价自己。同时让学生通过折一折、看一看、说一说、议一议等,使学生感受到民主、平等、积极、愉悦,从而他们才可以敢想敢说,个性充分张扬,健康心理也得以培养,课堂也真正成为学习的共同体。
通过这节课的教学,我感悟到:新课堂,学生不再是接受的“容器”,而应是可点燃的“火把”;新课堂,学生不再是“配角”,而应是活动的“主体”;新课堂,不再是机械的训练,而应是注重获取新知识的能力;新课堂,不再是教师在表演,而应是学生在交流合作。
面对新课标,我们如何从过分强调传授知识的系统性、完整性,开始向关注学生人格发展的健全性、全面性思考?如何从过分强调严格划一的统一要求,开始关注不同学生的不同需求和个性发展?如何从偏重知识传授、智力开发,开始向注重学生心理健康、情感体验等非智力因素的思考?又如何从偏重课堂教学具体环节程序的设计,开始向注重创设愉悦和谐的课堂氛围而努力?是否所有的教学内容都可以按上面这种教学模式来上?这些都值得我们去思索和探讨。
《轴对称图形》是苏教版三年级上册第六单元的内容,本节课初步教学轴对称图形。教材在编排上从具体到抽象、从感性到理性,循序渐进。本教材联系学生的生活实际,选择学生熟悉和感兴趣的材料,让学生通过观察、操作等形式多样的活动,初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,以及利用轴对称方法进行变换或设计图案打好基础。教材的编写意图是要抽象出生活中轴对称现象的共同特征,使学生能从整体上去认识轴对称现象,在各种探究活动中让学生感悟轴对称图形的特征,并培养学生积极健康的审美情趣。
要使学生真正成为学习的主人,教学必须要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在学习实践中逐步学会学习。通过先观察再对折的活动,学生发现了这些图形的共同之处――对折后折痕两边的部分能完全重合,揭示了轴对称图形共同的特征。通过找作品中的轴对称图形,让学生进一步认识到:如果把一个图形对折,只要折痕两边的部分能完全重合,那么这样的图形就是轴对称图形,这条折痕就是它们的对称轴。再让学生通过折一折,画一画,剪一剪的活动,初步体验了轴对称图形的特征,学生学得轻松、有趣、扎实。
在讲授这课时,课本上的有这样一节设计,让同学们判断下列图形是否是轴对称图形,这些图形有正方形、等腰梯形、等腰三角形、不等腰三角形、不等腰梯形、圆形、长方形、平行四边形。学生在通过观察后,大多的图形全体同学们都非常容易的判断正确了。只是在平行四边形是否是轴对称图形的问题上存在较大的分歧,是与否两方的支持率大约各是50%左右。为了加深学生的认识,我课前让学生亲自动手做了一个平行四边形让他们拿出来折一折,然后再做判断。学生马上表现出极高的探索热情,在通过折一折的操作后,全班同时达成了共识,平行四边形不是轴对称图形。当时,我暗暗的窃喜,对新教育理念“学生只有动手才能学会”又加深了一层理解。学生通过亲自的`动手操作,走进了知识的形成过程,是掌握知识的重要途径。
但是,这节课还存在一些不足之处,比如:轴对称图形可以是左右对称,也可以是上下对称、斜着对称,虽然课上我也展示了各种方向的对称,但在欣赏对称图形时,学生受到一些思维习惯的干扰,左右对称容易给他们造成思维定势,对上下对称、斜着对称易忽视。还有,学生虽然对轴对称有了认识,也能说出是不是轴对称,但用数学语言完整的表述出来有难度,个别学生抽象思维能力较弱,对本节课的内容掌握欠佳,有待课后单独辅导。在以后的教学中,我会根据新课程的理念,努力改进教学方法,发挥好教学活动的组织者、引导者的角色,让课堂成为学生获取知识并享受成功的殿堂。
《轴对称图形》教学反思
《轴对称图形》这个内容主要借助生活中的实例和学生操作动手活动来判断哪些物体是对称的,找出其物体的对称轴,并初步地、直观地了解轴对称图形的性质。
轴对称图形的教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法和看到一半想另一半的空间想像力。在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
1、从激趣入手,以兴趣为先导,营造轻松愉快的课堂气氛。针对小学生年龄偏低,抽象思维能力和空间想像能力还相对较弱的实际情况,我设计了猜一猜这个活动,出示一些简单的对称图形的一半,让学生去猜另一半,这样不但启发了学生的空间想象能力,还能让学生在情境中发现数学信息,找出数学规律,让学生体会到生活处处有数学。
2、通过动手操作,剪一剪、折一折、画一画等活动,让学生用自己的思维方式开放性地去探索、去发现、去再创造,培养学生的动手操作能力和创新能力,使学生通过大量的`感性经验形成表象,进一步体会轴对称的含义,把“学”数学变为“做”数学,提高了学生动手实践的能力,让学生积极地参与到课堂学习当中。学生在整个动手操作的过程中,进一步体会了对称图形的形成,感受到了对称图形的内在美。通过欣赏同学的作品这一活动,使学生在欣赏美丽的对称图案的同时又与大家分享自己作品的愉悦心情,让学生在满足自己成功感的同时也体验到数学的美和创造的美。学生在观摩同学作品和相互交流的过程中也会受到启发而获得一份宝贵的学习资源。
3、拓展延伸,挖掘教材中可发展学生创造思维的素材,让学生自由地折纸、剪图案,发挥他们的想象,创造性地剪出各种美丽的图案,这样不仅注重学生知识的掌握,更注重学生各方面能力的发展;学了“轴对称图形”后,又让学生找找说说生活中利用了“轴对称图形”的例子,从很大程度上培养了学生留心观察身边事物的良好习惯,进一步体会到数学来源于生活,学数学是为了生活服务的思想。
总的来说,这节课能把更多的时间与空间还给了学生。站在学生的角度看,本节课应该是从学生的实际出发,遵循学生的认知规律以及他们的发展需求,较好地体现了教学中“以生为本”的教学理念。
北师大版《轴对称图形》教学反思
《轴对称图形》是北师大版三年级(下册)教材的教学内容。通过本节课学习,意在让学生体会生活中的对称现象,初步认识轴对称图形及对称轴,并能根据其特征准确进行判断,同时在活动中让学生领略轴对称图形的美妙和神奇,感悟数学与生活的联系。教学过程中能够按照学生的认知规律,充分发挥教师的主导作用和学生的主体作用,创设问题情景,激发学生学习的欲望,采取“折一折,比一比”等实践活动,让学生充分认识认识轴对称图形的基本特点,即对折后两边能完全重合,经历知识的形成过程,感受了学习数学的快乐,培养学生观察、交流、操作的能力。下面我将从两个方面——优点和缺点对本节课进行反思。
优点:
1、本节课层次清晰,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。课堂上能很自然亲切的和学生打成一片,并且注重培养孩子良好学习习惯,如在做每一道练习题时先让学生读题,并引导学生准确理解题目意思。注重引导孩子完整表达能力。
2、教学方法新颖,激起学生探究的兴趣。如“对折”是“轴对称图形”的研究方法,以往教学中,教师一般都会直接要求同学进行下列操作活动:请你们先把图形对折,再观察一下这些图形对折后有什么特点。这样的做法显然忽视了学生学习的主动性,漠视了学生学习的`心理需求,如果没有要动手折一折的强烈愿望,学生只能处在被动接受的状态,因为老师要我们折,所以我要折一折,至于为什么折,学生是茫然而盲目的。
怎样才能激发学生主动学习的欲望?课堂上,我们先引导学生观察“心形,小鱼,双喜字,房子,字母”有什么共同的特点?学生通过大胆的猜测说出左右两边或上下两边完全一样,这时老师一头雾水的问:你们怎么知道它们两边完全一样呢?有什么方法可以证明吗?促使他们主动寻求证明方法解决问题,提出本节课的研究方法“对折”,这样的处理使接下来学生的操作活动,目标变得清晰起了,同学们带着明确的方法和活动目标进行活动,学习知识的过程自然而流畅,凸显了数学学习方法价值。
不足之处:
1、《轴对称图形》一课,就教材特点来说,很容易把课上得生动、有趣,但本节课有点欠缺,就是对本节课的重点知识(对折后完全重合)强调的不够,让学生感触的不够,学生对折完之后,应该再让学生说一说对重合的理解,让孩子完整的表达知识的本身。
2、小组汇报的时候多给孩子一些时间,让孩子完整的把自己的想法表达出来,然后再请其他同学进行补充,而不是教师代替他们说。有一句话是这么说的:“我们要的不是喧闹的回答而是静下心来的倾听”,所以要对课堂上认真倾听的同学进行表扬和鼓励,引导学生逐步养成认真倾听,多动脑思考的习惯。
3、板书有点随意,今后应加强粉笔字的练习。
一、从课堂反思
1、轴对称图形,其实学生在生活当中已有接触,本节课的内容是要提出轴对称图形这个概念,并让学生学会判断轴对称图形。这些知识将为接下来的画轴对称图形、画对称轴等知识做铺垫。
2、这节课我的设计遵循了孩子的认知规律和年龄特点,注重趣味性、实践性。我首先设计了一个疑问,引起学生兴趣来探究。接下来我让学生自主探究天安门、飞机和奖杯的图片,通过折一折、说一说初步感知这些图形的相同点,然后我与学生一起总结归纳,明确完全重合的意思,提出轴对称的概念。在练习中,我设计了搜索、竞猜、当设计师等一系列活动,提升对轴对称图形的认识。在整堂课中,我非常注意学生表达的完整性,培养学生的表达能力。
3、本节课的亮点是猜一猜的游戏,掀起了一阵阵的高潮,而我是小小设计师的活动,也让学生跃跃欲试,摩拳擦掌展示了一把。
4、在上完课后,我最大的遗憾是在学生欣赏轴对称图形中没有达到预期的效果。如果我的语言再优美一些,我想轴对称图形的美肯定对学生的冲击肯定会更强烈!
二、从教学方法反思
这节课我采用“问题探究、启发引导、合作交流”的教学方法,充分发挥学生在课堂上的主体地位,让学生通过操作、交流、反思、运用等过程,真正培养学生的观察能力、归纳能力、思维能力和创新能力。
三、从学生情况反思
这节课学生活跃、积极思考,课后作业及时完成,质量较好。但是学生在表达方面还有待加强,有些学生表达的意思还不够清楚,有的学生需要老师提醒才能表达完整,这还需要我在以后的课堂上多关注学生的表达能力的培养。
★ 轴对称图形的教学
★ 轴对称图形课件