下面是小编为大家收集的小学数学老师《简便运算知识的与复习》教学反思(共含13篇),仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。同时,但愿您也能像本文投稿人“yddsdm”一样,积极向本站投稿分享好文章。
小学数学老师《简便运算知识的整理与复习》教学反思
简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算,所以有必要进行一次系统的整理与复习,帮助学生理清当中的奥秘。
本节课主要的教学流程是:一、从常规的口算入手,让学生通过口算初步理解口算的一些技巧,二、通过学生对本单元知识进行整理,并进行汇报,主要目的是让学生对所学的知识唤起回忆;三、利用学生作业中出现的错例,让个别学生进行汇报,并特别提醒同学注意的地方,避免不必要的错误发生;四、通过题组的对比,让学生找出哪些能简算,哪些不能简算,进一步理解简算的要求和特点,然后基本练习、综合练习的应用进行反馈,达到练习的目的。
本节课做得比较好的地方是:1、能让学生自己整理本单元的知识点,让学生对所学知识有了系统的`整理,培养了学生概括和归纳的能力;2、从学生的错例入手,让学生从身边的典型问题入手,再让学生自己分析、改正,同学之间及时提醒等方式,减少错误率的发生;3、通过课堂上多让学生说一说、评一评等方式,培养了学生分析说理能力和语言的表达能力,让学生学得更加有自信。4、提倡算法的多样化,如:88125,学生做出了两种答案:①、88125=80125+8125=10000+1000=11000;②、88125=11(8125)=111000=11000。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同125相乘;第②种则将88分成811,然后利用乘法交换率和结合率,先把8与125相乘,最后再乘11。首先肯定答案都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处,希望同学能有侧重点地选择算法。最后强调:简便运算的思路会有很多,只要把握凑整这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理。
本节课仍有不足之处:
1、本节课对于把一个数拆成两个数的形式可以是相加、相减、相乘、相除等形式,可是在这节课中出现得不是很明显,对于学生概括知识点不是很全面;
2、学生在计算过程中仍存在一定的小问题,在后面教学中要更加注意;
3、对于中下生的辅导,兼顾得也不是很周到,如:算理的分析、书写的理解、式题的特征等,可以通过老师的点拨、同学的帮助等形式进一步让学生不掉队。
《四则运算与简便计算》总复习教学反思
《复习四则运算的定律和性质》教学反思
这节课,我通过对简便计算方法的整理和复习,使学生进一步理解运算定律和运算性质,灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等进行简便计算,提高计算能力。学好《复习四则运算的定律和性质》对学生今后的计算起至关重要的效果,下面我就这节课谈谈自己的做法.
首先我在课前布置学生预先对简便计算方法的做一次归纳整理。在四则混合运算的简便方法教学中,学生都觉得课堂教学,都是与数字和符号打交道,不具有挑战性,虽然对优等生有学习的趣味,但是学困生学习没有积极性。这些原因直接影响的课堂的教学效果,那么如何提高学生的学习积极性呢?我在平时的教学中经常进行计时计算训练,把每次完成计算的时间写在卷面上,学生们都有一种好胜的心理,学习的积极性较高。所以,一上课,我首先来一个口算计时计算比赛,挑起学生学习的热情。接着提问:你们在计算的过程中使用了哪些运算定律和运算性质?口算题比较简单,学生在尝试了胜利的喜悦后,激情澎湃,很快进入学习状态。
接着,通过填空、判断、口答题的练习,进一步加深学生对运算定律和运算性质的理解,再结合例题,让学生说说容易出错的地方,引起学生注意知识的联系。然后进行综合、提高练习,练习由浅入深,并进行计时,学生饶有兴趣。在练习中,我要求需要帮助的同学举手,并给予适当的`提示,每完成一道就同桌交换批改,然后说出有错的地方。在课堂教学中,既有教师对知识的预设,但更多是学生在学习过程中知识的动态生成。
学生知识生成过程中,既有效的,也有的是无效的和费效的。因此如让学生知识生成过程中拔乱反正,也是一个值得我们教师去研究的课题。练习简便运算时,可以让学生先观察每道题的特点,思考能否应用运算律或其他已经学过的规律使计算简便,然后计算,并在小组里交流各自的方法,相互促进,共同提高。我们常遇到一种简便的方法和一种原始的方法学生往往是喜欢原始的繁杂的方法去完成练习,而简便的方法却不用。有些教师在教学过程中,为了体现学生的自主性,会对学生说“你觉得那种方法好你就用那种算”。这样造成了很多学生都认为老办法好,更适应自己去练习。而对新的、简便的方法弃之不用。从而造成了这类学生对新知识不接受。有些人常以新课标的道理说“学生喜欢用什么方法去完成就用什么方法,在他心目中这种方法是最简便的,无需去干预。”我觉得这样做是不对的,明明有直道 ,为什么要去走弯道呢。为了让学生能掌握并使用这种简便的方法了,我安排了一场比赛,在计算能力相当的两组学生中,一组用老方法计算,一组用新方法计算。看谁计算的又对又快。结果是很明显,用新方法做的同学早就计算好了,且正确率很高。而用老方法做的同学还有一半以上没完成。孰优孰劣一比便知,学生都看到了其中的优越性。
本节课通过多层次的练习,学生不仅掌握了所学知识,发展了能力,同时也照顾到全班不同层次学生的学习水平,使他们体验到成功的喜悦,情感得到满足。但这节复习课却使我明白今后应充分尊重学生,应跳出思维定势,换个角度考虑问题。具有以生为本的理念,课堂才有生命,才不会留有遗憾!
《运算定律与简便计算》四年级数学整理与复习的教学反思
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的'比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
本节课的内容是简便运算复习课,主要针对典型错题进行讲解练习,并完成课本中47页的练习题。
成功之处:
1.对于运算定律的复习,出示了六道学生容易出错的题目:88×12599×38+3836×99720÷45784-42+5825×32×125。在练习的过程中让学生说一说每道题应用了什么运算定律,特别是784-42+58学生应用了结合律进行“凑整”,导致出错。由于学生在这阶段都是应用运算定律进行简便计算,所以导致学生不认真进行分析题目,只想一味地进行应用。通过此题的训练,让学生要遇到具体问题,进行具体分析,培养学生灵活解决问题的能力。
2.对于练习题的处理,渗透转化思想和等量代换思想解决问题。
第7题:求不规则图形的面积。先让学生独立思考,然后全班交流,让学生说一说是怎么想的。通过交流使学生认识到:要求不规则图形的面积,应使其转化为学生学过的规则图形的面积,可以通过添加辅助线的方法,即可以用补的方法转化为大长方形的面积减去小长方形的面积,也可以用拆分的方法转化为两个长方形,把两个长方形的面积相加。通过此题的学习,让学生了解数学的基本思想——转化思想,并且知道转化思想的内涵是将要解决的复杂问题转化为另一个较易解决的问题或已经解决的问题。通俗地讲,就是把未学过的知识转化为以前学过的知识。
智慧园:求每个图形各代表多少。此题是应用等量代换思想解决问题,让学生汇报解题思路。
(1)由△+△=□+□+□(2)由△+△=□+□+□
□+□+□=○+○+○+○□+□+□=○+○+○+○
得出:△+△=○+○+○+○得出:△+△=○+○+○+○
△=2○△=2○
由△+□+○+○=400由△+□+○+○=400
得出:○+○+○+○+□=400得出:△+△+□=400
□+□+□+□=400□+□+□+□=400
□=100□=100
由△+△=300○+○+○+○=300
得出:△=150得出:○=75
由△=2○由△=2○
得出:○=75得出:△=150
通过对解题思路的理解,教师向学生介绍数学的又一思想——等量代换思想,其内涵就是用一种量代替和它相等的另一种量。
不足之处:
1.对数学思想的`介绍就题论题,没有进行系统的介绍。
2.由于时间的关系,每种典型易错题只练习了一道,没有进行再巩固。
再教设计:
1.对于数学思想的介绍可以使用尽可能大的篇幅让学生感受到数学思想是数学学习的灵魂,是数学学习的精髓所在,应让学生系统进行感知和学习。
2.易错题型要反复练习,让学生练就一双慧眼,能灵活应用运算定律解决问题。
通过教学这节复习课,给我感触最深的是复习课不是单纯的为复习而复习,而应在基本练习的基础上根据题目深入挖掘其中的内涵,可根据题目的需要适当渗透数学思想。
运算定律与简便运算教学反思
[建议]:
1、“先学后教+当堂训练”教学模式不能学形式。如果不看自己所教班级的实际情况,把整个“引导——学练——堂堂清”教学模式的形式的一切一切,照搬过来,可以说,您的收获一定大不了,甚至会出现退步,可能要出现成语中“鸡飞蛋打”的效果。要把“先学后教—当堂训练”教学模式的实质和所教班级、学情联系起来,取其精华,这样才会取得较大的成绩。遵循的原则:凡是能使学生学习变好、能使学生习惯好转的方法、要求都可以强化,但千万不要在原方法和制度的基础上动作过大,否则学生、老师都吃不消,循序渐进,使这些方法和制度逐渐加强。
2、“先学后教—当堂训练”教学模式,有利于培养学生的自学能力,更有利于分层推进,这就需要教师一步一步地扔掉原来的不好的方法和经验。“先学后教—当堂训练”教学模式最主要的就是:学生是主体,在知识的学习中主要以学生自学、学生讲解为主。但有的老师总认为自已不讲讲,学生不会,不自己讲讲,学生总结不全面,这就错了。如果学生总结的深度不够或者各方面不全,那是老师“引导”这个工作没有做好。就需要我们在“引导”的内容上下功夫。只要引导得当,学生可能比老师想得全面。
3、“先学后教+当堂训练”教学模式。无论是备课还是上课、无论是自习还是作业批改,要真正按照“先学后教—当堂训练”教学模式去教好学,工作量是特别繁重的。课前预习你一定要分析清课程的知识点、重点、难点,还要把引导的内容和过程设计一下,即使在上课时的设计和实际不一定相吻合也要认真设计好,因为这是有的放矢的第一步。课上的巡回指导和提问会使感到劳累。课下的辅导和作业更需要的细心和奉献。
4、“先学后教+当堂训练”教学模式。如果学生从来没有自己预习过课本、从没有自己总结过知识点、从没有自己讲过课、没有养成认真听讲的习惯,那在开始时就要有个思想准备:设计教学的每一个环节都可能出现失败,这就需要教师严格落实“一丝不苟的学习态度、一滴不漏的学习要求、始终如一的学习习惯”的学风训练,执行好学习常规。
5、“先学后教+当堂训练”教学模式。不能是教师只学模式的形式,不研究教学实质,第二就是不能持之以恒。只要认准了目标,就一定要走下去,不管在学习、教学的道路上有多少阻力和挫折,只有执着地追求、探索,就一定会成功。如果能正确地分析学习中的各个环节,并把已经成功的目标教学、创新教学应用到教学中去,成绩肯定比现在还要好,课堂教学水平肯定有质的飞跃。
[反思]:
在本单元教学过程,我们主要采取利用讲学稿“先学后教,当堂训练”的教学模式进行教学,我们觉得有以下几点是比较成功的:
1、简便计算不仅是一种知识技能,它更是一种优化思想,这种优化思想不是一节课就能完成的的事,它不能灌输,更不能速成,它需要一个长期感悟的过程。
2、简便计算与学生的数感是密不可分的。因此,培养学生良好的数感,对于学生提高运算能力,大有益处。
3、简便运算的`思路会有很多,我们要注意培养学生算法多样化,培养学生灵活、合理选择算法的能力。
4、在教学中,教师要把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。同时,加强变式、逆向的练习,提高学生举一反三、有效迁移的能力。
5、简便计算的意识还要渗透于解决问题中,在没有“简便计算”这样的显性要求下,学生也能考虑简便计算。
6、我们应该努力让学生在简便计算的过程中,逐渐提高简算的兴趣,逐渐掌握简算的依据,逐渐领会简算的技巧,真正具备简算的意识,让学生明白三个层次:
①、进行简算应该由一定的运算定律、性质作为依据;
②、必须正确、适当地运用运算定律、性质进行简算;
③、应该根据数据特征灵活选用运算定律、性质。
《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的`给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
人教版小学数学四年级下册第三单元《运算定律与简便计算》,教材安排的顺序是加法运算定律---乘法运算定律---简便计算。这样安排,虽然可以按四则运算进行归类,但是对运算定律的类比推理不利。教学时,可以根据运算定律的类比进行安排教学内容,以促进教学效果的更加有效。
一、调整教材顺序,促进有效教学
乘法交换律与加法交换律有着相似之处,都是交换数的位置进行运算,结果不变。乘法的结合律的教学可以与加法的结合律的教学安排在共一课时。
学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出交换两个加数的位置,和不变,这叫加法交换律。然后再安排教学乘法交换律,让学生通过举例说明,得出ab=ba,再通过对加法交换律概念的类比,推理出交换两个因数的位置,积不变,这叫做乘法交换律。再以同一课时或者前后课时,安排教学加法结合律与乘法结合律,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出先把前两个数相加,或后两个数相加,和不变这叫做加法结合律。教学乘法结合律时,再通过具体事例得出abc=a(bc),再对加法结合律的概念的类比推理,得出先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600254 9600254 9600254
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8(125982)=8125982
乘法分配律:8975+8925=89(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350(72)=35072
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a(bc)=abc的运用在有帮助。因此逆向运用的训练,很有必要。
教材安排的顺序是加法运算定律---乘法运算定律---简便计算。这样安排,虽然可以按四则运算进行归类,但是对运算定律的类比推理不利。教学时,可以根据运算定律的类比进行安排教学内容,以促进教学效果的更加有效。
一、调整教材顺序,促进有效教学
乘法交换律与加法交换律有着相似之处,都是交换数的位置进行运算,结果不变。乘法的结合律的教学可以与加法的结合律的教学安排在共一课时。
学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出交换两个加数的位置,和不变,这叫加法交换律。然后再安排教学乘法交换律,让学生通过举例说明,得出ab=ba,再通过对加法交换律概念的类比,推理出交换两个因数的位置,积不变,这叫做乘法交换律。再以同一课时或者前后课时,安排教学加法结合律与乘法结合律,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出先把前两个数相加,或后两个数相加,和不变这叫做加法结合律。教学乘法结合律时,再通过具体事例得出abc=a(bc),再对加法结合律的概念的类比推理,得出先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
960025496002549600254
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8(125982)=8125982
乘法分配律:8975+8925=89(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350(72)=35072
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a(bc)=abc的运用在有帮助。因此逆向运用的训练,很有必要。
《运算定律与简便计算》教学反思
您现在正在阅读的《运算定律与简便计算》教学反思二文章内容由收集!本站将为您提供更多的精品教学资源!《运算定律与简便计算》教学反思二人教版小学数学四年级下册第三单元《运算定律与简便计算》,教材安排的顺序是加法运算定律---乘法运算定律---简便计算。这样安排,虽然可以按四则运算进行归类,但是对运算定律的类比推理不利。教学时,可以根据运算定律的类比进行安排教学内容,以促进教学效果的更加有效。
一、调整教材顺序,促进有效教学
乘法交换律与加法交换律有着相似之处,都是交换数的位置进行运算,结果不变。乘法的结合律的教学可以与加法的结合律的教学安排在共一课时。
学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出交换两个加数的位置,和不变,这叫加法交换律。然后再安排教学乘法交换律,让学生通过举例说明,得出ab=ba,再通过对加法交换律概念的类比,推理出交换两个因数的位置,积不变,这叫做乘法交换律。再以同一课时或者前后课时,安排教学加法结合律与乘法结合律,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出先把前两个数相加,或后两个数相加,和不变这叫做加法结合律。教学乘法结合律时,再通过具体事例得出abc=a(bc),再对加法结合律的概念的类比推理,得出先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的`简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600254 9600254 9600254
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8(125982)=8125982
乘法分配律:8975+8925=89(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350(72)=35072
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a(bc)=abc的运用在有帮助。因此逆向运用的训练,很有必要。
1、充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。
2、加强数学与现实世界的联系,促进知识的理解与应用。
本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材这一意图,用好教材,借助数学知识的`现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。
3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
教学内容:义务教育课程标准实验教科书第八册第三单元。
教学目标:
1、通过复习,加深对五大定律和两大性质的理解,了解每一个定律、性质在哪种运算中来用。
2、培养学生根据算式和数据特点灵活选择算法的能力,进一步提高计算的灵活性和速度。
3、使学生能够应用运算定律、性质解决实际问题,感受数学与生活的联系,增强学生学习数学的兴趣。
教学重点:加深对定律的理解,能运用运算定律和性质进行一些简便计算。
教学难点:合理、灵活运用所学定律、性质进行简便计算。
教学准备:课件、答题卡。
教学过程:
一、创设情境,导入复习。
1. 同学们,老师这里有两组题,请你仔细观察,如果让你人选一组进行计算比赛,你会选择哪一组?为什么?
出示:A 1、107+58+135 B 1、7+58+93
2、25×17 2、43×4+43×6
3、3000÷24 3、3000÷ 25÷ 4
2.结:是的,运用运算定律可以进行简便计算,今天就让我们一起对第三单元《运算定律与简便计算 》进行整理与复习。板书课题。
二、回顾整理,建构网络。
(一)初步整理,形成学生网络。
1、师:,这一单元都学了哪些知识呢?请同学们打开课本27页,浏览本单元内容,画出你找到的知识点。开始吧。(学生看书)
2.从你们端正的姿势中,我知道你们都找完了。
哪位同学能把你找到的知识点汇报一下?
学生汇报,说出运算定律及字母表示。生汇报:(师往黑板上写,并引导生说是什么定律或性质)
a+b=b+a
(a+b)+c=a+(b+c)
a×b=b×a
(a×b)×c=a×(b×c)
(a+b) ×c=a×c+b×c
a-b-c=a-(b+c)
a÷b÷c=a÷(b×c)
4.你们可真能干,找到了这么多的知识点。这些知识点都不是孤立存在的,它们之间又有着密切的联系和区别,你们能把这些运算定律和性质分分类,使它们更有条有理,便于理解,又便与运用吗?
5.请看要求(课件)
1、小组合作整理,用线、箭头等你们喜欢的方式勾画知识之间的联系。
2、小组内交流,说说自己的想法,选出代表汇报整理内容。
6.以小组为单位整理 ,然后组织汇报 。师完善板书
加法 a+b=b+a
(a+b)+c=a+(b+c)
乘法
a×b=b×a
(a×b)×c=a×(b×c)
(a+b) ×c=a×c+b×c
性质
a-b-c=a-(b+c)
a÷b÷c=a÷(b×c)
(二)精细整理,形成网络。
1.经过各小组的努力把这一单元所学的知识按课本的知识结构进行了分类整理,全面、清晰,还体现了我们学习的先后顺序——这就是我们平时最常用的整理复习知识的方法。
2.同学们,请看黑板,加法运算定律和乘法运算定律我们可以将它们分成一类。性质再分一类。(之后引导学生找出它们之间的联系和区别,完善板书,最后总结板书,明确运算定律和性质的知识它们合起来就是第三单元《运算定律与简便计算》的所有知识点。
交换律
区别:加法交换律是加数交换,乘法交换律是因数交换。
联系:它们都是数字位置改变,但运算顺序不变。
结合律
区别:加法结合律是加数结合,乘法结合律是因数结合。
联系:它们都是数字位置不变,但运算顺序改变。
运算性质
区别:运算符号不同
联系:改变运算符号,改变运算顺序
定律与性质包含
师:交换律和结合律属于什么?
生:运算定律
师:运算定律与性质都属于(生说,师把课题移下来)
3.运算级的区别:
再仔细看这些运算定律和性质,观察其中的运算符号,还有没有新的`发现?
根据学生的回答 ,大括号勾出属于同级运算的,和不属于同级运算的。
师:看着我们共同整理的结果与小组整理的(拿一块小组整理的板)感觉有什么不同?
生:整理方法不同
生:深入
生:详细
4.师小结:是啊,集体的力量就是大,这种整理方法虽然打破了我们当初学习的先后顺序,但同样呈现出了所有知识点,我们还找出了这么多知识之间内在的联系与区别,这也是一种很好地整理与复习知识的方法。
5.同学们看,一个单元的内容,经过我们的整理后,提炼成了这么简单的一幅图。像这两种整理知识的方法,你们会运用到其他单元吗?
老师相信你们以后一定可以做得更好。
6、师:同学们,你们知道吗?其实啊,这些运算定律、性质并不是这个单元才刚认识,我们早就在用了,只是你们没发现!请看大屏幕!这里运用了什么运算定律课件出示:一年级,二年级、三年级应用,让学生说说用了什么运算定律。
三、重点复习,强化提高。
1、师:同学们,对于这些运算定律和性质,你们掌握得这么好,把它们放到计算中,你还能不能一眼就认出它们来?走,让我们一起去看一看。请看大屏幕(每小组选做一题跟你小组相同序号的题)
1、8×11×125 2、117×3+117×7 3、79+132+21 4、3200÷25÷4
2.生边汇报师边出示计算过程与结果(汇报完毕,要说一说运用的是什么运算定律或者性质)
3.师:观察这四道题,尽管运用的定律和性质不同,有没有什么相同的地方?
生:都把两个数凑成整十整百的数。
师:把两个数怎么才能凑?
生:合起来。
4.师:为了凑成整十整百的数。我们要用“合”的方法。“合”是做题的一种选择思路。请同学们猜想一下,既然有合的方法可以凑整,能使计算变得简便,有没有其他方法也可以凑整呢?
生:(猜测)有,分
2、师:你真善于思考,到底有没有“分”的方法呢?请接着看(课件)。
出示125×16 101×37 99+2+999
师:125×16谁能口答。
生答。
3.师:真快,说说怎样算的才有这速度
师:看来你们猜的正确,分开也是为了凑整,也是为了计算简便。
4. 101×37
师:你是分的哪个数?应用了什么运算定律?
生:把101分成100+1,应用了乘法分配律。
生口答99+2+999
5.小结三道题,师:通过这三道题的验证,确实 “分”的方法也可以凑整,使计算简便。
6.小结:刚才我们运用的合与分,它们都只是一种解题方法,做题时不但要灵活运算定律和性质,还要注意观察用什么方法来做,可以原本繁杂的计算变得简便,同时也体现了一种转化的思想。
转化
(板书:繁 → 简)
7、练习
师:同学们,对于这种由繁转化成简的方法,你们理解了麼?下面让我们来试试,同学们对这种思想理解得怎么样。
请看屏幕(各小组选作与组号相同的题)。
35×14-25×14 1230÷5÷123 157+59-57 314-137-114
(1)、简便计算。
(2)、用——标出计算过程中最关健一步。
(3)、想一想,小组交流,为什么这步最关健。
8.生汇报35×14-25×14,师问35×14-25×14运用什么运算定律,并引导生发现是逆用乘法分配律。
9.师小结:也就是说这些定律和性质,我们既可以从左边推到右边,还可以从右边反推到左边(板书:左--右)
生汇报1230÷5÷123 157+59-57 314-137-114
10.师总结:同学们真了不起,除了运用基本定律和性质,我们还有这么多可以简便计算的方法,看来运用了运算定律和性质不一定就简便,计算能简便也不一定因为用了运算定律和性质,所以我们计算时要观察数据特点,找到解决问题的快捷方法。
11、数学家高斯小时候的故事。
师:同学们关于运算定律的使用,有个经典的故事,想不想了解一下?(课件展示)
12、故事看完了,你们想成为善于思考的数学王子吗?女生还想当数学公主呢,不管王子还是公主,那得先接受我的考验,干吗?请看大屏幕
1、每人任意出一道可以运用简便方法解决的算式
2、数字不用太大,只要能体现出运算定律或性质即可
学生自己写。
13.生汇报写的算式,让另一生说运用什么定律或性质
小结:咱们班同学,真是个个都善于动脑,勤于思考,老师从心底赞赏你们,好样的!
四、自主简评,完善提高。
师:谁来说说,这节课,哪点你印象最深?
生回答。
师:数学源于生活,寓于生活。通过今天的学习,对整理与复习学过知识的方法,你是不是有了更深的了解?这节课就上到这里,下课。
《运算定律与简便计算》的教学反思
1、充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。
2、加强数学与现实世界的联系,促进知识的理解与应用。
本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的`愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。
3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
小学四年级下册数学《简便运算复习》教学教案设计
教学目标:
1.通过复习,牢记所有公式。
2.通过复习,发现学生以前知识中的问题,及时改正。
3.通过复习,建立知识之间的联系和区别,形成知识网络。
重点难点:
通过复习发现学生以前知识中的问题,及时帮助学生纠正,加深记忆教学目标
一、复习公式。
师:想一想你都学习过哪些运算定律和性质?
1.加法交换律:a+b=b+a
两个加数交换位置,和不变,这叫做加法交换律。
2.加法结合律;(a+b)+c=a+(b+c)
先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。
3.乘法交换律:ab=ba
交换两个因数的位置,积不变,这叫做乘法交换律。
4.乘法结合律:(ab)c=a(bc)或abc=a(bc)
先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。
5.乘法分配律:(a+b)c=ac+bc或(a-b)c=ac-bc
乘法分配律的逆运用:ac+ab=(a+b)c或ac-bc=(a-b)c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
6.减法不变性质 :一个数减去两个数,等于第一个数减去后两个数的和。 a-b-c=a-(b+c)
7.商不变性质:被除数和除数同时乘或除以相同的倍数(零除外),商不变。ab=(ac)(bc)=(ac)(bc) (c0)(b0)
8.一个数减去两个数的'差,等于先减去第一个数,再加上第二数,即:a-(b-c)=a-b+c
9.某个数先减去第一个数,再加上第二个数,等于某数减去这两个数的差:a-b+c=a-(b-c)
二、总结
这些定律和性质,大都可以推广,
加法交换律结合律:推广到多个数相加。
乘法交换律结合律:推广到多个数相乘。
乘法分配律:推广到几个数的和或差乘以(或除以)一个数。
请同学们再记一下公式。
三、解题思路。
公式记熟了,遇到简算题,选择合适的方法是关键。(板书:方法是关键)
一般来说,连加算式中,应用加法交换律和结合律;连乘算式中;应用乘法交换律和结合津;在除法算式中,应用商不变性质;连减或加减混合算式中,应用减法的性质。
四、巩固练习
1.判断下面简算各题是否正确。
(1)994.4 (2)452.5
=(100+1)4.4 =(454)(2.54)
=1004.4+14.4 =18010
=440+4.4 =1800
=444.4
(3)25(0.49)
=250.4+259
=10+225
=235
2.用简便方法计算下面各题。
(1)132.5 (2)3.212.525
(3)(444)25 (4)9999
教学反思:
这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,相互探讨。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。
★ 运算教学反思
★ 运算教学反思
★ 简便计算教学反思