今天小编在这给大家整理了8年级数学说课稿《一次函数的图像》(共含8篇),我们一起来阅读吧!同时,但愿您也能像本文投稿人“凄美爱情”一样,积极向本站投稿分享好文章。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明,
一.教材分析
1.教材的地位和作用
本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想,
三.教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。
1.知识与技能
理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。
2.过程与方法
经历一次函数的作图过程,探索某些一次函数图象的`异同点;
3.情感态度与价值观
体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.
四.教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
五.教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。
一.教材分析
1.教材的地位和作用
本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的'教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。
三.教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。
1.知识与技能
理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。
2.过程与方法
经历一次函数的作图过程,探索某些一次函数图象的异同点;
3.情感态度与价值观
体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.
四.教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构,
五.教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(一)创设情境
前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。
(1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x; (4) y=3x+2。
教学说明:
第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。
第二步、学生自主完成函数(2)的图像。
第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?
一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。
第四步、学生用两点法作出函数(3)(4)的图像。
观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证。
设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(二)探究归纳
再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:
(1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的。
(2) y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b。
由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;
不同点:它们与y轴的交点不同。
而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行。
补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。
设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。
(三)实践应用
1.完成课本例1
注意引导让学生讨论、交流,及时反馈知识在实际中的应用。
2.完成课后练习
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(四) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
(五)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
六.教学评价
本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。说课对我来说仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见,谢谢大家!
八年级数学一次函数的图像教学设计
教材分析:
学情分析:
教学目标:
1、理解一次函数及其图象的有关性质。
2、能熟练地作出一次函数的图象。
3、进一步培养学生数形结合的意识和能力。
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
二.新课讲授
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。
议一议
(1)正比例函数y=kx的图象有什么特点?
(2)你作正比例函数y=kx的图象时描了几个点?
(3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?
小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
(4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小。
做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。
一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k>0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的`增大而减小。
由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。
想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?
(2)直线y=-x与y=-x+6的位置关系如何?
(3)直线y=2x+6与y=-x+6的位置关系如何?
在同一直角坐标系内作出一次函数y=2x,y=2x+3,y=2x-3的图象。探索一次函数y=kx+b中,b的值对一次函数图象的影响.
三.巩固练习
1、正比例函数y=kx的图象的特点。
2、一次函数y=kx+b的图象的特点。
3、一次函数y=kx+b的k、b的值对一次函数图象的影响。
四.小结
作业设计
1、下列一次函数中,y的值随x值的增大而增大的是
A、y=-5x+3B、y=-x-7C、y=-D、y=-+4
2、下列一次函数中,y的值随x值的增大而减小的是()
A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6
在今天的数学课上,我把每组的两三位学生叫到了黑板上,把前两节课学过的一次函数图像的大致画法画出来,但出乎我的预料之外的是没有一个可以完整的画得出来。我有点想不通,简简单单的k大于0上坡型,k小于0下坡型,b大于0往上平移,交y轴于正半轴,b等于0图像必过原点,b小于0往下平移交y轴于负半轴,这样的几句话都记不了。是不是我的教学有问题?还是学生上课时并不是用心来听课?不过我今天叫的这些学生上课时发呆、讲话,课外时间又没有好好的复习是他们的通病。虽然课堂是我讲话有点大声,但我并没有什么恶意,其他同学发出的笑声也不是讽刺,我们只是希望你能端正学习态度,讲究学习方法,迸发出学习的热情,一起加油,不要让全班失望,让065班的整体成绩能有所提高。
当然除了学习上令老师担忧之外,在纪律上也令老师头痛。抽烟、喝酒、写情书谈恋爱、威胁同学请客、穿奇装异服等。老师知道现在的中学生追求个性,张扬个性,这没有什么错。步入青春期,对异性产生了好感,也是本能,但越过了警戒线就不应该了。你们知道没有,你们来到学校的主要任务是什么?是学习以后为自己终身服务的科学文化知识。怎么还心思去想别的事情呢?
在这里,我要把下面这些良言送给你们,送给所有我的学生:
1、年轻人犯错误,上帝都可以原谅,何况是一个普通的老师。但请你记住:上帝能够原谅的事,社会不一定会原谅;老师能够原谅的事,老板不一定会原谅。你将生活在现实而复杂的社会,而不是中学和天堂。
2、年轻就是资本,但年轻是学习知识和打拼事业的资本,而不是放纵自己和庸碌生活的理由。请你记住:不要以为年轻就一切还来得及,来不及的不是年龄而是在岁月流逝中所积累或错过的一切。
3、“勿以善小而不为,勿以恶小而为之。”人的品性和素质是一个长期养成的过程,而中学时的养成往往会影响你的一生。请你记住:上课说废话、发呆、搞小动作等的确不是什么大毛病,但如果养成一种习惯,就会决定你被社会“请出去”的命运。
4、尊重别人是一种美德,它会赢得认同、欣赏和合作。请你记住:不尊重朋友,你将失去快乐;不尊重同事,你将失去合作;不尊重领导,你将失去机会;不尊重长者,你将失去品格;不尊重自己,你将失去自我。
5、张扬个性表达自我是一种本能,挑战权威是一种勇气。但表达自我不能伤害别人,挑战权威不能破坏规则,除非你在进行革命。请你记住:不要试图用带有道德色彩的另类行为去赢得关注,也许在目光关注的背后是心底的离弃。
6、无知者无畏并不可怕,真正可怕的是无知者还无所谓。请你记住:不要用无所谓的态度原谅自己,对待一切,那会使一切变得对你无所谓,也会使你成为一个无所谓而又无所成的痛苦的边缘人。
说这些话,源于自责,更多的是一个老师的良知和认知,希望你们能够理解。
人教版八年级数学上册《一次函数图像性质》教学反思
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的.过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。
八年级数学上册《一次函数图像性质》教学反思
课程标准对这一节的要求:知识技能方面,理解直线y=kx+b与直线y=kx之间的位置关系;会画出一次函数的图象;掌握一次函数的性质。数学思考方面,通过一次函数图象归纳性质,体验数形结合法的应用;解决问题方面,通过一次函数图象和性质的研究,体会数形结合法在问题解决中的应用,并能运用性质、图象及数形结合法解决相关函数问题。情感态度方面,体会数与形的内在联系,感受函数图象的简洁美;在探究活动中渗透与他人交流、合作的意识和探究精神。本节课教学重点是:一次函数的图象和性质。难点是由一次函数的图象归纳得出一次函数的性质及对性质的理解。
本节课的设计思路是:通过6个活动,在复习正比例函数和一次函数的定义、正比例函数图象和性质的基础上,在同一个直角坐标系中描出正比例函数y=-6x和一次函数y=-6x+5的图象,通过让学生观察比较去体验两者之间的位置关系,得出一次函数的图象是一条直线,并且函数y=kx+b的图象实际是直线y=kx上所有点进行了平移的结果。因为两点确定一条直线,通过活动3明白要做出一次函数的图像只需要选取图象和坐标轴的两个交点坐标就可以了。从而达到掌握一次函数图象的画法的目的。然后在同一直角坐标系中画出四个k和b取不同值的一次函数的图象,进一步巩固一次函数图象的画法,同时观察k和b的变化引起直线位置和变化趋势的`变化,使得一次函数的性质这一教学重点自然浮出水面,水到渠成。再通过学生演板课后练习题,及时反馈教学效果,查缺补漏。设计一个思考题让学有余力的学生对常数b也有一个较为深入的认识。最后通过小结总结回顾学习内容养成整理知识的习惯。选作题设计目的是对作业进行分层要求,使“不同的学生在数学上得到不同的发展”。
成功之处:通过复习旧知,达到承上启下,引入新课之目的,教学内容的设计,由浅入深,循序渐进,通过学生自主学习,合作交流和教师的适度引导点拨,使学生达到“蹦一蹦能摘到桃子的效果”。一次函数K和b对图象、性质的影响。
《一次函数图象的应用》的数学说课稿
各位评委老师,你们好:
我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。
新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。
一、 教材分析:
1、教材内容所处的地位及作用
本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
在《数学课程标准》中,对于本节内容提出了明确的要求,
另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。
2、教学目标:
⑴、知识与能力:
①、能通过函数图象获取信息,发展形象思维。
②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
⑵、过程与方法:
①、在亲身的经历与实践探索过程中体会数学问题解决的办法。
②、初步体会方程与函数的关系,建立良好的知识联系。
⑶、情感态度与价值观:
①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。
②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
3、教学重点、难点及其确立的依据:
由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的.第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:
1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。
二、学情状况分析:
1、学生现状:
针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:
⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。
⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。
⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。
⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。
2、知识情况:
本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。
3、预期效果:
学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。
另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。
教师招聘面试:数学-《一次函数》说课稿
各位考官,大家好,我是X号考生,今天我说课的内容是《一次函数》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。
一、教材分析
《一次函数》是人教版八年级下册十九章第二节的内容,函数作为数学中重要的基本概念之一,也是初中数学的重点内容之一。本章知识是学生初中阶段学习函数的起始 篇章,为后期进一步学习更为复杂的二次函数、反比例函数等内容做好知识铺垫。
二、学情分析
对于学情的合理把握是上好一堂课的基础。本节课的授课对象为八年级的学生,他们的观察、记忆、想象、总结概括能力在迅速的发展,所以在教学中应该更多的发挥学生的主体性作用,引导他们多观察、多思考,也要多创造条件与机会,让学生发表对所学知识见解。
三、教学目标
新课标指出,教学目标应包括知识与技能、过程与方法、情感态度与价值观,这三维目标又应是紧密联系的一个有机整体,这要求我们在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。
知识与技能:知道什么是一次函数,能根据解析式判断是不是一次函数。
过程与方法:在实际问题的探究过程中,通过对函数解析式的观察,归纳出一次函数的概念。
情感态度与价值观:体会数学与实际生活的紧密联系,提高将实际问题抽象为函数模型的能力。
四、教学重难点
基于以上对教材和学情的把握,我的教学重难点为:
重点:一次函数的定义。
难点:一次函数定义的产生过程。
五、教学方法
结合教材内容以及学生的实际情况,本节课我采用的教学方法有讲授法、讨论法、练习法。在教学过程中,我将秉承着以学生为主体,让学生始终处于主动的学习状态,在结合教师对于知识讲解的同时,保证学生有充分自主思考探讨的机会。再借助多媒体演示以及组织学生以小组为单位进行讨论式学习,让学生在合作实践中思考,在思考、归纳、总结的过程中培养数形结合解决问题的能力。