圆的面积说课稿

| 收藏本文 下载本文 作者:阿洛家的牛奶球

下面是小编整理的圆的面积说课稿(共含12篇),欢迎您阅读分享借鉴,希望对您有所帮助。同时,但愿您也能像本文投稿人“阿洛家的牛奶球”一样,积极向本站投稿分享好文章。

圆的面积说课稿

篇1:圆面积教学反思

圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,教学中我是这样设计的:

一、导学激趣,以旧促新。

本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

二、大胆猜测,激发探究。

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

三、直观演示,加深理解。

当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。

篇2:圆面积教学反思

教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,设计了以下几个环节:

一、让学生亲身经历知识的形成过程,渗透转换的数学思想

首先引导学生回忆所学过图形面积公式推导的过程,如:回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

二、演示操作,加深理解

在教学中,我让学生通过重叠大小不同的两个圆使他们感受到圆的面积与半径有关系,再放手让学生应用转化的方法进行操作,把一个圆通过分、剪、拼等过程,转化成一个近似的平行四边形,从中发现圆和拼成平行四边形的联系,并根据长方形的面积公式推导出圆的面积的计算公式,在这过程中,不但使学生有效地理解和掌握圆的面积计算公式,而且也使他们获得了转化的数学思想方法,并培养了学生探索问题的能力。

三、练习设计体现了针对性,层次性和实践性

本节课的课堂练习即有对圆的面积计算公式的巩固性练习,也有运用圆的面积解决简单的实际问题的练习,还有综合运用长方形、圆的有关知识解决简单的实际问题的练习。通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。

在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。

篇3:圆面积教学反思

圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。

本节教学主要突出了以下几点:

1.复习旧知识,引入新知。让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

2.引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,教师作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。在演示前,我要求学生边观察边思考什么变了,什么没变?你能发现什么?再让学生以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。 在发现了圆面积的公式后,再用用数方格的方法来验证,学生觉得既轻松又简单,而且对公式的掌握和理解学得又牢固扎实。

在新课程理念的指导下,特别提出了“让学生经历类比、猜想、验证可探索圆面积的计算方法的过程。”而我在本课中的这些设计符合新课程的理念,使学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、验证等过程,发现了教学问题,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了的思维发展。

篇4:圆面积教学反思

一、本课是在学生学习了圆的认识的基础上进行教学的,力求实现变抽象为直观,化静为动,为学生提供丰富的感性材料,促进学生知识的迁移,帮助学生理解公式的推导过程,激发学生的学习兴趣,渗透数学中的转化思想。

教学导入时,我首先以当前的热点话题20xx奥运会切入主题,学生倍感亲切,紧紧抓住了学生的注意力,学生在教师的适时调控下由奥运会主会场鸟巢自然过渡到怎样求圆的面积呢?力求达到衔接自然的教学效果。

二、新授中首先让学生借助学具的操作,把圆形平均分成若干份,通过观察发现每份是近似的三角形,进而把圆分割成若干个三角形,借助三角形的面积公式推导出圆的面积公式,同时向学生渗透极限的思想,分的份数越多,每一份越接近三角形。之后教师引导学生利用分割后的三角形重新拼组成我们学过的长方形,依据它们之间的联系也能推导出圆的的面积公式。以上两种方法,一种是分割法,一种是拼组法,无论哪一种方法都渗透了转化的思想,引导学生找出新旧知识的衔接点,温故而知新,力求达到有效突破教学难点的目的。

三、练习中首先让学生通过一组口头列式,及时巩固所学新知,力求使学生获得成功的喜悦!在此基础上,将导入时怎样求鸟巢的占地面积,补充上条件,让学生利用所学解决实际问题,首尾呼应,力求取得事半功倍的教学效果。最后给学生一个紧密联系实际的数学问题,求学校花坛的面积,激起学生的兴趣,学生在讨论中明确先测量出周长,然后求出半径,再计算花坛的面积,力求使学生在不断的尝试中逐步提高,升华新知!

篇5:《圆面积》试讲教案及反思

《圆面积》试讲教案及反思

[教学目标]

1、使学生明确圆面积的概念;

2、使学生通过操作及课件的演示理解和掌握圆面积公式的推导方法;

3、使学生能够用圆的面积公式解决实际问题;

4、结合知识的学习,渗透转化的思想和极限的教学思想。

[教学重点和难点]

圆面积概念的建立;公式的推导及应用;转化和极限思想的渗透。

[教学准备]

学生:圆形纸板、剪刀、彩笔、三角板等学具。

教师:相应课件

[教学过程设计]

一、通过复习及“前导”明确概念

首先利用课件的“前导”演示,让学生直观感知 画圆留下的轨迹是条封闭的曲线;其次,在内填充颜色并分离,让学生明确:这条封闭的曲线长度是圆的周长;填充的部分是曲线围成的面是圆的面积。接着,让学生摸一摸手中圆形纸片的面积和周长,亲身体验一下。

【反思:圆的面积是在圆的周长和半径的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。】

二、通过设想及“演示”以旧促新

1、设想

师:我们认识了圆的面积,那么该如何计算圆的面积?该怎样发现和推导圆的面积公式呢?你能否根据以前学过的平面图形面积计算公式的推导过程来设想一下怎样计算圆的面积吗?

生:�D�D�D�D�D�D�D�D�D�D�D。

2、让学生讨论、交流,发表见解,然后根据学生的回答再通过课件的“演示”再现平行四边形、三角形、梯形面积公式的推导过程。分析、对比各个公式推导过程的共同点和不同点,给学生以视觉的刺激,使学生领会到把一个图形转化成已学过的图形,从而推导出这个图形面积的计算公式。

【反思:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的'知识储备,为新知的“再创造”做好知识的准备。】

三、动手操作及“演示”完成圆形的转变

1、师:通过上面的设想和演示知道了以前学过的平面图形的计算公式的推导是把该图形转化成以学过的图形,从而推导出这个图形的面积计算公式,那么你们能否按照老师的分法动手把你手中的学具―圆,分成8等份,剪开并合拼(随之出示“演示”中的把圆分成4等份的剪拼)

学生:小组合作动手摆一摆,把手中的圆的学具转化成学过的平面图形。

2、师:让学生观察它像什么图形?为什么说“像”平行四边形?

学生:发表自己的意见。

师:充分肯定学生的观察。

师:如果说8等份有点像,那么再来看看16等份会怎么样?(电脑演示16等份的圆,放在一起比较)哪个更像平行四边形? (学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的。)

师:引导学生闭上眼睛想象,如果分成32等份会怎么样?64等份呢?……

(电脑继续演示分成32等份的圆,64等份的圆的分割、拼合)

3、 电脑出示:把圆4、8、16、32等分的组合转化图。

让学生观察、比较、讨论充分发表自己的观察结果。

【反思:让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。】

四、通过推想及“演示”得出公式

师:我们通过刚才的动手操作和电脑的演示,知道了一个圆经过等分与拼接能转化成一个长方形。请再次观察在拼接的过程中,图形的面积是否发生了变化?

生:�D�D�D�D�D�D�D�D�D(使学生明确,在拼接的过程中,图形的面积没有发生变化,该圆的面积等于拼成的长方形的面积)

师:那么,在观察的过程中,你是否发现,这个长方形的长、宽与圆的什么有关系?有什么关系?将你的发现和同学们交流一下。

生:---------------------(使学生明确:这个近似长方形的长相当于圆周长的一半,即 = ;宽就是圆的半径r)

师:打出课件让学生进一步观察比较,验证自己的观察结果。

师:谁能根据我们的观察结果,推导出圆的面积公式?

生:(讨论、交流、发表见解)

教师根据学生的发言,随之打出课件“圆的面积计算公式:

s=πr

【反思:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

五、实际应用

(教师逐一展示本组课件,让学生积极讨论、交流、发表各自的见解)

题一、已知一个圆的半径是5厘米,求这个圆的面积?(图)

题二、一个圆桌的直径是90厘米,请你算一算这个圆桌面的面积是多少?(图)

题三、一只要换底的圆形水桶,经师傅量得底面周长是81.64厘米,你能否帮助师傅计算一下至少用多少铁皮?(图)

总结:1、回顾圆面积的推导过程;

2、讨论并得出求圆面积应具备那些条件?

【反思:这组循序渐进的实际应用课件的展示,力求使学生掌握圆面积的计算公式,明确圆周

长公式与圆面积公式的内在联系,提高在生活和生产中需要用圆面积计算公式来解决实际问题

的能力,力求使学生在情景中建立空间观念。】

篇6:《圆面积》小学数学评课稿

《圆面积》小学数学评课稿

李老师讲的《圆的面积》这节课,是北师大版六年级的教材内容。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。

因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。听了李老师讲的《圆的面积》一课,深受启发,感觉课讲的很成功。由于李老师多次深入钻研教材,可以说准确地理解教材编写意图,跳出教材,对传统的课堂教学结构进行大胆的改革,把教师的主导作用和学生主体作用紧密结合起来,强化教学互动、学生实验操作推理验证,对提高学生素质和培养学生[此文转于YY空间。com]的创新意识与实践能力具有一定的作用,取得了较好的教学效果。我认为主要有以下几方面的亮点:

一、转变教师角色,改善教学行为。

在实施新课程的背景下,在“以发展为本”的课堂教学中,“教师的职责现在已经越来越少地传授知识,而是越来越多地激励思考;……他将越来越成为一位顾问,一位交换意见的参加者,一位帮助发现矛盾论点而不是拿出现成真理的人。他必须拿出更多的时间和精力去从事哪些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。”本课教学中,李老师更多地体现为:引导者——给学生的.学习提供明确的导航目标,辅导者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。合作者——关注学生的学习,参与学生的学习活动,与学生共同探讨问题,共同寻求问题的答案。与学生构成良好的学习共同体。

二、重视自主探究,发挥学生主体性。

学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生[此文转于YY空间。com]的参与意识和创新精神。在教学“圆环的面积”计算公式推导时,李老师先让学生看一看一个大圆当中的小圆可以拿出来,那剩下的图形的面积也就是圆环的面积要怎么来求呢?学生通过图形能够直观的推出圆环的面积就应该用大圆的面积—小圆的面积,从而来推导出圆环的面积计算公式,然后留给学生充分的时间和空间,让学生自己在下面计算圆环的面积。再引导学生交流、验证自己的推导想法,师生共同倾听判断学生的汇报圆环的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历实验操作、总结验证的学习过程。这样有序的学习,不仅发展了学生的智能,而且提高了学生的实践能力和创新意识。

总之,这节课充分体现了李老师先进的教学理念和高超的教学艺术,充分体现张老师追求课堂教学有效性的探索过程,给我以深刻的启示和借鉴。

篇7: 《圆面积公式推导》教学设计

教学设想:

本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。

教学过程:

一、创设情景,明确目标

师:(多媒体课件出示照片)同学们,这个地方你们熟悉吗?这是我们校门口内的一个圆形大花坛,学校打算要给这个花坛铺上草坪,需要多少草皮呢?这实际上要我们解决什么数学问题?

生:圆的面积

(板书:圆的面积)

师:今天这节课,我们就来讨论怎样求圆的面积。

二、利用迁移,探究方法

师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)

师:它们的面积公式分别是怎样得到的?(学生答略)

师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?

生:都是用转化的方法推导出来的。

师:今天我们要学习的圆形与以上几种图形有什么明显的区别?

生:圆形是由曲线围成的。

师:能不能也用“面积单位”去量呢?

生:不能。

师:那我们该用什么方法解决呢?

生:也可以用转化的方法,把圆转化成我们熟悉的图形。

师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。

生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。

三、借助想像,感悟“极限”

师:同学们,你们听了他的介绍后,心里还有什么疑问吗?

生:这个拼成的图形好像真的是长方形吗?

生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。

师:那我们得想个办法,把它变直,谁有办法?

生:等分的份数多一点?

师:究竟能分多少份?16份?32份?64份?

生:等分的份数越多,拼成的图形就越接近于长方形。

师:请同学们闭上眼睛想像一下,如果一直这样不断无限地等分下去,这个近似的长方形将会怎样?

生:拼成的图形就真的变成长方形,因为边越来越直了。

四、小组合作,拓展思路

师:同学们,刚才我们发现书上果然利用了转化方法,把我们不熟悉的图形转化成熟悉的长方形,推导出圆的面积公式,那你们猜想一下,还能把圆转化成哪些图形?

(学生回答,师板书)

师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。

上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。

师:谁还有与众不同的方法吗?

生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。

师:你真聪明,能不能以16等份为例写出推导过程呢?

(生写出推导过程)

师:刚才一小块可以看面是三角形,那么,如果等分的份数少一点呢,再少一点呢?……因而整个圆其实可以看作什么呢?

生:一个大三角形。

师:真棒,这个大三角形的底就是什么?高就是什么?

生:这个大三角形的底就是圆的周长,高就是圆的半径。

师:同学们真厉害,能不能写出推导过程呢?

(生写出推导过程)

师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。

五、联系生活,应用知识

师:现在你们会解决校门口花坛的草坪面积了吗?

生:条件不够,要知道半径是多少?

师:好,半径是5米。

学生计算,师提醒学生注意计算时r2不要算成2×r

师:直径是10米行吗?(指名汇报)

师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。

生:半径

师出示深化题,学生练习

1.用一根绳子把一只羊拴在一片草地中的木桩上,绳长3米,这只羊吃到草的最大面积是多少?

2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?

3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?

4.某县政府部门在规划一条圆形的环城路,要计算这条路所围的面积有多大,你有什么办法?

篇8:《圆面积的计算》评课稿

《圆面积的计算》评课稿

一、目标定位正确:

1、课内充分培养学生动手操作、观察、分析、概括推理等能力。

2、理解圆面积计算公式的推导过程。掌握圆面积的计算公式。

3、让学生能利用圆面积公式进行计算,解决实际问题。

二、引入自然。

1、复习巩固了圆的周长计算公式,同一圆内半径与直径关系。

2、复习巩固了什么叫面积,让学回忆,平行四边形、三角形、梯形、面积计算的推导过程。从而自然引入圆面积计算的推导过程。

三、注重学生的动手操作。

在教学过程中,充分体现让学生自己动手画圆,把圆平均分成若干份,再让学生拼成近似的长方形或平行四边形。让他们仔细观察,研究长方形的长(或平行四边形的底)是什么,长方形的宽(或平行四边形的高)是什么,从而推导圆面积的计算公式。与此同时,更重要的是培养了学生的空间想象能力。

探讨的地方

在学生动手操作的`过程中,为了照顾中差学生,教师应充分了;利用教具或课件展示,让学生有充分的观察和思考,真正感悟圆面积公式推导的整个过程。其次是在计算公式中对半径的平方还需要指导和练习,以便学生在解决问题的实际过程中很好的运用。

篇9:圆面积公式的推导分析论文

圆面积公式的推导分析论文

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着,出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长度?从而

由长方形的面积=长×宽

↓↓

得圆的面积=πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的.办法,把新旧知识有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会”,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算,但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出它的面积呢?(揭示、板书课题)。

2、创设情境。

教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后再分别与原来的图纸片叠在一起,见下图:

(附图{图})

折四等份剪成折八等份剪成折十六等份剪成

正四边形正八边形正十六边形

引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等份。

3、推导公式。

师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?

生[,1]:选正十六边形为好,因为它较接近圆。

生[,2]:选边数越多的正多边形更好,因为它更接近圆。

师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:

(1)圆的面积相当于多少个三角形面积之和?

(2)这些三角形的底边之和相当于圆的什么?

(3)每个三角形的高相当于圆的什么?

学生边回答,教师边板书:

正十六边形的面积=S[,三角形]×16

=底边×高÷2×16

=底边×16×高÷2

↓↓

圆的面积=2πr×r÷2

=πr[2]

最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形,看是否仍能推出S[,圆]=πr[2]。

〔评:这种教法具有以下几个特点:

1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。

2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。

3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本中的方法及其他方法作验证,使学生加深理解,记忆牢固。

4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。

总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”,又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由此可见,后两种教法是可取的,且教法三更佳。

篇10:《圆面积公式推导》优秀教学设计

教材分析:

教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。

学情分析:

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。

教学目标:

知识与技能目标:

1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。

2、初步运用圆面积计算公式进行圆面积的计算。

过程与方法目标:

通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。

情感态度和价值观:

通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。

教学重难点:

教学重点:圆面积公式的推导。

教学难点:极限思想的渗透与公式的推导。

教学方法和手段:

教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。

教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。

教具准备:多媒体课件一套、圆形纸片。

学具准备:两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。

一、复习引入

1、幻灯片出示复习题目。

2、激趣导入

同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)

【设计意图:兴趣是最好的老师。在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

二、合作探究,推导公式

1、圆面积定义

2、圆面积公式推导

那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接

去度量,显然是行不通的。请同学们回忆一下:平行四边形、三角形、梯形的面积分别是怎样计算的?

教师根据学生说的过程,通过课件演示出转化的过程。

【设计意图:平行四边形、三角形和梯形的公式推导过程是学生迁移的基础。这一环节的设计既为了勾起学生对已有知识的回忆,更是为了让后进生能够掌握新知打下良好的基础。】

想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)

下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

(小组合作,探究交流。)

谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)

小组1:我们平均分成了8份,拼成的图形非常像平行四边形。

小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。

小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。

小组4:我们拼的图形像个梯形。

小组5:我们平均分成了4份,拼成的图形像平行四边形

大家真了不起!把圆转化成了这么多近似的图形,观察所拼平行四边形的三种情况,请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

学生回答:分的份数越多越接近长方形。

下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:

(1)圆的面积与这个长方形的面积有什么关系?

(2)这个长方形的长与圆的周长有什么关系?

(3)这个长方形的宽与圆的半径有什么关系?

(4)如果圆的半径是r,这个长方形的长和宽各是多少?

(小组合作,探究交流,推导出面积公式)

小组内说一说圆面积计算公式推导过程,师板演。

小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。

【设计意图:这节课的重点是圆的面积公式的推导,为了让学生在大脑中烙下深深的印痕,这一环节的设计让学生在课上多动手,去剪、去拼、去贴,多动脑,去思考圆的转化方法,这样学生在课上手脑并用,个个精神十足,根本不可能再出现课上走神的现象。】

小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)

三、实践运用,体验生活

那么圆的面积公式到底有什么用呢?

现在我们会求牛最多吃多少草吗?

四、课堂小结

这节课你有什么收获,学到了哪些知识?

五、课外思考。(幻灯片出示)

已知一个圆的周长,你能计算这个圆的面积吗?

板书设计:

圆的面积

圆所占平面的大小叫做圆的面积

圆的面积=近似长方形的面积

圆的面积圆周长的一半圆的半径

长方形的面积长宽

S=c/2×r

=2πr/2×r

=πr×r

=πr2

篇11: 《圆面积公式推导》优秀的教学设计

学材分析

教学重点:

掌握求圆面积的三种不同情况。

教学难点:

正确地进行简单的有关圆的组合图形的面积。

学情分析

简单的面积计算基本会,但联系实际解决问题的能力还不够强。

学习目标

1.进一步掌握圆面积的计算公式,并能正确地计算圆面积。

2.了解求圆环面积的方法,能计算简单的有关圆的组合图形的面积。

导学策略

导练法、迁移法、例证法

教学准备

投影仪、自制投影片、圆规

教师活动

学生活动

一.引入

1.提问:要求圆的面积,必须知道什么条件?如果已知圆的直径、周长,能求出这个圆的面积吗?那么怎样求半径?根据学生的回答板书:r=、r=。

2.面积呢?[板书:S=πr2=π2=π()2]

3.揭示课题。

二.展开

1.教学补充例1,投影出示

先请学生分析题意,并问:已知什么?要有用哪个面积公式?然后根据学生的回答列式解答。最后。

2.尝试

试一试。指名板演并说说是怎样算的?

三.巩固

四.

五.作业

学生回答问题。

巩固练习

教学反思

解题思路学生基本能掌握但还须练习。

篇12: 《圆面积公式推导》优秀的教学设计

教学内容

课本第143页例2;练一练第1~6题。

教材分析

这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的.周长。求圆面积的应用题。

学情分析

本班学生计算能力还可以,就是对应用题有一种害怕心理。

教学目标

1、进一步掌握圆面积公式,并能正确地计算圆面积。

2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

教学重点

会熟练运用公式求圆面积。

教学难点

求出需要的条件,即圆的半径。

教学准备

作业纸、课件。

教学过程

一、复习。

课件出示:

(一)求下列各题中圆的半径。

(1)C=6.28分米,r=?;(2)d=30厘米,r=?

(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?

(二)、求下列各圆的面积。

(1)r=2分米,S=?(2)d=6米,S=?

(3)r=10厘米,S=?(4)d=3分米,S=?

只要求学生进行口头表述计算公式(不求计算结果)

二、学生活动:

要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

运用学生事先准备的工具(细绳、直尺等)

三、汇报交流

小组把作业纸上交,交流心得

姓名

准备工具

物体名称周长

半径

面积

四、巩固练习

练一练第1~6题。

《作业本》p73。

板书设计:

圆面积公式的应用

R=d÷2

R=c÷π÷2

S=πr

圆面积公式推导

圆面积练习教学反思

妈妈说课稿

合格率说课稿

图兰朵说课稿

学前教育说课稿

水说课稿

说课稿大班

全英文说课稿

老师说课稿

圆的面积说课稿(整理12篇)

欢迎下载DOC格式的圆的面积说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档