初中概率计算优秀教学设计

| 收藏本文 下载本文 作者:lolypxxx

以下是小编收集整理的初中概率计算优秀教学设计(共含13篇),仅供参考,欢迎大家阅读。同时,但愿您也能像本文投稿人“lolypxxx”一样,积极向本站投稿分享好文章。

初中概率计算优秀教学设计

篇1:初中概率计算优秀教学设计

教学目标:

1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

2、 收集统计在生活中应用的例子,整理收集数据的方法。

3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

教学过程:

一、课前预习,出示预习提纲:

1、我们学习了哪几种统计图?

2、这几种统计图各有什么特点?

3、概率的知识有哪些?

二、 展示与交流

(一)提出问题

1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

2、师:先独立列出几个你想调查的问题。(写在练习本上)

3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

4、接着全班汇报交流(师罗列在黑板上)

师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

(二)收集数据和整理数据

1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

(三)开展调查

1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

3、全班汇总、整理、归纳各小组数据。(板书)

4、师:分析上面的数据,你能得到哪些信息?

5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

6、师:根据这些信息,你还能提出什么数学问题?

(四)回顾统计活动

1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

3、 结合生活中的例子说说收集数据有哪些方法?

(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

的实例)来说说自己的方法。

(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

篇2:初中概率计算优秀教学设计

教学目标:

1、经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。

2、在运用统计知识解决实际问题的过程中,发展统计观念。

重点难点:

发展统计观念。

教学准备:

投影片。

复习过程:

一、回顾与交流

1、收集数据,统计表。

师:我们班要和六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?

学生可能回答

① 姓名、性别。

② 身高、体重。

③ 兴趣爱好。

(1)调查表。

为了清楚地记录你的情况,同学们设计了一种个人情况调查表。

姓名 性别

身高/cm 体重/kg

最喜欢的学科 最喜欢的运动项目

最喜欢的图书 长大后最希望做的工作

最喜欢的电视节目 特长

① 填一填。

② 用语言描述清楚还是表格记录清楚?

(2)统计表。

为了帮助整理和分析全班的数据,同学们又设计了一种统计表。

你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。

2、统计图。

(1)你学过几种统计图?分别叫做什么统计图?各有什么特征?

① 条形统计图。

特征:清楚表示出各科数量的多少。

② 折线统计图。

特征:清楚表示数量的增减变化情况。

③扇形统计图。

特征:清楚表示各种数量的占有率。

(2)教学例题。

①认真观察例题中的图表。

②指出各统计图的名称。

③从图中你能得到哪些信息?

如:从扇形统计图看出,男、女生占全班人数的百分率;

从条形统计图看出,男、女生分别喜欢运动项目的人数。

3、平均数、中位数和众数。

(1)什么是平均数?什么是中位数?什么是众数?

(2)出示例题。

身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58

人数 1 3 5 10 12 6 3

体重/kg 30 33 36 39 42 45 48

人数 2 4 5 12 10 4 3

①在上面两组数据中,平均数、中位数和众数各是多少?如果在全班学生中任意抽取一人,体重在36千克及以下可能性大还是39千克及以上可能性大?

a.找出中位数和众数。

b.计算平均数。

②不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗?

学生在小组中交流,说一说各自的思维过程和结果。

③你认为用什么数表示上面两组数据的一般水平比较合适?

让学生说出自己的看法,并说明理由。

二、巩固练习

完成练习二十一第1~4题。

篇3:初中概率计算优秀教学设计

在生物的有性生殖中,生物相交常见的有杂交(测交实际上属于杂交范畴)和自交两种方式。求解杂交或自交后代中某种基因型或表现型个体出现的概率也是遗传规律题中一种常见的题型。

这类题型有两种类型,一种是两亲本概率都为1时的计算,另一种是两亲本概率都不为1(或其中之一不为1)时的计算。

对于第一种类型,根据遗传规律采用一定的方法可以直接求解,如Aa和aa杂交后代中aa出现的概率为1/2。第二种类型的计算则比较复杂。

【方法点拨】

(1)当两亲本出现的概率不为1(或其中之一不为1)时,求解杂交后代中某种基因型或表现型出现的概率,应分两步进行:

①先不考虑亲本出现的概率或把亲本出现的概率当做1,运用交叉线法、棋盘法或分解组合相乘法,求出后代中某一基因型或表现型出现的概率;

②把第一步求出的结果与亲本出现的概率相乘,最终得出结果。

(2)当亲本出现的概率不为1时,自交后代概率的计算方法与杂交类似,也分两步进行。

但在计算时需要注意二者计算时的区别:当两个杂交亲本出现的概率都不为1时,需要将两个亲本出现的概率都考虑进去相乘,而在自交中,亲本不为1的概率只能考虑一次(即相乘一次),这是因为自交中父本和母本都是同一植株,例如父本的基因型是Aa,则母本的基因型一定也是Aa。

(3)亲本中至少有一方概率不为1时杂交和自交两类计算方法归纳如下:

①杂交后代概率的计算:假设两个亲本出现的概率分别为c和d,杂交后代中某一基因型或表现型的个体在不考虑亲本出现的概率时(或把亲本出现的概率当做1时)的概率为e,则实际上杂交后代中某一基因型或表现型的个体出现的概率为e×c×d。

②自交后代概率的计算:假设某亲本出现的概率为a,其自交后代中某一基因型或表现型的个体在不考虑亲本出现的概率时(或把亲本出现的概率当做1时)的概率为b,则实际上自交后代中某一基因型或表现型的个体出现的概率为b×a。

篇4:初中概率教学设计

一、教学目标

(一)知识与技能

让学生经历收集数据、整理数据、分析数据的活动,使他们在解决问题的整个过程中进一步巩固所学的统计知识,培养梳理知识结构的能力。

(二)过程与方法

通过整理、分类、制图、观察、比较、分析信息,形成统计观念,进而形成依据数据和事实来分析和解决问题的方法。

(三)情感态度和价值观

使学生进一步体会数学与生活的紧密联系,形成尊重事实、用数据说话的态度,形成科学的世界观与方法论。

二、教学重难点

能根据收集的数据制成合适的统计表和统计图。

三、教学准备

多媒体课件,作业纸。

四、教学过程

(一)谈话引入,复习旧知

教师:同学们,今天这节课,我们要一起来复习统计与概率的知识。首先,请大家回忆一下,在小学阶段我们学过哪些统计知识?你能在草稿本上尽可能多地列举出来吗?

学生独立完成后,教师继续引导:同桌之间互相交流和补充,然后想一想,可以怎样对这些知识进行分类整理?

讨论交流后,依据学生回答,课件出示下图。

教师:谁能简要地说一说,平均数是用什么方法得出的?

预设:平均数是通过计算得出的。

教师:这三种统计图各有什么特点?适合在什么情况下使用呢?

预设:条形统计图便于直观了解数据的大小及不同数据的差异。折线统计图便于直观了解数据的变化趋势。扇形统计图能清楚地反映各部分与整体之间的关系。

【设计意图】通过“独立思考──互补交流──分类整理”的过程,让学生从整体上复习有关统计的知识,并借助树形图形成知识结构。

(二)整理数据,自主探究

1.收集整理数据,制作统计图表。

教师:请同学们拿出课前已经填好的调查表(如下)。先按项目剪开,然后9个小组的组长将你们要整理的项目条收集起来,先整理分类,再用统计表进行统计。想一想,从统计表中可以得出哪些信息?

学生开始按课前分好的小组收集项目条,教师巡视并帮助有困难的小组进行数据整理。

【设计意图】本环节中各小组都有各自的分工,便于学生经历数据收集和整理的过程,并利用统计表进行简单的分析。

说明:教学设计中接下来将选用教材提供的数据。在实际教学中,教师应充分利用学生实际调查所得的数据展开教学。

2.求统计量和分析。

教师:经过大家的共同努力,各小组的统计表已经整理好了,请到前面来展示你们的成果。

学生1:我们第一小组整理的是全班同学的身高情况,制成的统计表是这样的。

教师:观察这张统计表,你们有什么发现?

预设:身高是1.52米的同学人数最多,身高是1.40米的人数最少。

学生2:我们第二小组整理的是全班同学的体重情况,从表中可以知道,体重是39千克的人数最多,体重是30千克的人数最少。

其余各小组分别展示统计表后,教师适时提出问题:选择一张统计表,你能得出这组数据的平均数吗?用什么数据能代表全班同学的身高、体重?

学生先独立练习,再小组讨论,教师指导小组合作学习。

教师:哪个小组来交流一下你们的学习成果?

学生3:第一组数据的平均数是1.50425。我们认为用平均数能代表全班同学的身高情况。

学生4:第二组数据的平均数是39.6。我们认为平均数可以代表全班同学的体重情况。

教师:同学们合作学习的效率非常高。老师这里还有个问题,你能很快解答吗?

如果把全班同学编号,随意抽取一名学生,该生体重在36千克及以下的可能性大?还是在39千克及以上的可能性大?

预设:在39千克及以上的可能性大。因为体重在39千克及以上的人数比体重在36千克及以下的人数更多。

教师:你能提出类似的问题让小组同学解答吗?

【设计意图】用统计表表示全班同学的身高和体重分布情况,然后完成三个任务:计算平均数;讨论用什么数据能代表全班同学的身高和体重情况;依据数据判断哪个现象出现的可能性大。整个过程以小组合作和交流汇报的形式展开,激发学生学习的积极性和主动性。

3.制作统计图并进行分析。

教师:这是六(1)班男、女生人数统计表。想一想,用怎样的统计图表示比较合适?

预设:用扇形统计图比较合适,因为扇形统计图能清楚地反映各部分数据和整体之间的关系(课件适时出示下图)。

教师:想一想,用怎样的统计图表示你们组的统计数据比较合适?在方格纸或空白圆中画出统计图。

小组讨论确定统计图后,学生独立练习,教师巡回指导。

交流展示:

学生5:我们小组将六(1)班同学最喜欢的运动项目做成了复式条形统计图(课件出示)。

教师:观察这个统计图,你得到了哪些信息?

预设:六(1)班同学最喜欢的运动项目中,男生喜欢足球的人数最多,女生喜欢跳绳的人数最多。

学生6:我们小组整理的是“你对自己在各年级的综合表现是否满意”的情况,选用的是折线统计图(课件出示)。

教师:从这张统计图中,你能获得怎样的信息?

预设:六(1)班同学对各年级综合表现满意情况总体呈现上升趋势。

教师追问:想一想,这说明了什么?

预设:说明随着年级的升高,同学们对自己各方面表现的评价也越来越好。

【设计意图】从教师提供的素材引入,让学生在讨论和交流的前提下,制作合适的统计图表示各组统计的数据,充分体现了这部分知识的应用价值。后续的分析紧紧围绕各种统计图的特点,体现尊重事实、用数据分析实际情况的思想。

(三)练习巩固,加深理解

1.学生独立完成练习二十一第1题。

根据所要描述的情况,填写合适的统计图。

(1)描述六(2)班同学身高分组的分布情况,用___________。

(2)描述从一年级到六年级的平均身高变化情况,用___________。

(3)描述身高组别人数占全班人数的百分比情况,用___________。

指名回答,集体订正。

2.完成练习二十一第2题。

下面是某汽车公司去年汽车生产量和销售量情况。

(1)该公司去年全年的生产和销量情况如何?

(2)该公司的发展前景怎样?

(3)你还能提出哪些问题?

四、课堂总结,小议收获

教师:这节课复习了什么内容?用平均数表示一组数据时要注意什么?怎样根据实际情况恰当地选择统计图?

五、课外作业,实践应用

想一想:除了通过问卷调查收集数据外,还可以通过什么手段收集数据?请自主选择一个调查项目开展实践。

篇5:概率教学设计

教学内容:

北师大版小学数学四年级下册第82-83页内容。

教材分析:

概率是研究不确定现象(随机现象)的科学。随机现象是指:在相同的条件下重复同样的试验,其试验结果不确定,以至于在试验之前无法预料哪一个结果会出现;但大量重复试验,其结果会出现一定的规律。

概率学习的一个首要目标是使学生不断体会随机现象的特点,而这需要学生在亲自试验中,通过对试验结果的分析不断体会。本单元的题目也说明了这一点,是在游戏公平这一主题下,通过活动体会事件发生的可能性。

在第一学段中.学生已尝试定性描述事件发生的可能性,在第二学段中学生将进行一些简单的可能性大小的计算。

本节课主要设计了“用掷骰子决定谁先走棋”和“转转盘”两个游戏活动,抓住“可能性相等”这一重要概念,通过游戏活动加深理解。这也是学生继续学习概率知识和进行可能性大小计算的基础。

教学目标:

1.知识与能力:根据生活经验和试验数据,判断简单的游戏规则的公平性。会设计对双方都公平的简单游戏的规则。

2.过程与方法:通过游戏活动,体验事件发生的等可能性和游戏规则的公平性,进一步体会不确定现象的特点。

3. 情感、态度与价值观:能积极参与游戏活动,主动与同伴交流自己的想法。

教学重、难点:组织学生亲自从事试验,收集数据,分析结果,以体验两个事件发生的等可能性和游戏规则的公平性。

本年级学生从一年级开始就一直使用新教材,信息量大,具有较丰富的知识储备。在概率方面,学生能列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的;对一些简单事件发生的等可能性做出描述,并和同伴交换想法;经历由感知、探究到建立模型再到解释应用的数学学习体验。

另外,他们在日常的学习和游戏中对事件的等可能性会有一定的感知。考虑到本课内容具有活动性、过程性和体验性的特点,需要教师组织全体学生参加游戏活动。因此,在这节课的教学中应注意这样几个问题:

1.重视教学情境的创设。充分利用教材提供的游戏活动,和教师自己设计的一些游戏活动,激发学生的学习积极性。

2.注重让学生参与并从事试验,让他们在活动中获得直观感受。

3.引导学生主动与同伴交流想法,在交流讨论中,加深对游戏规则公平性的体验。

教学方法及手段:

根据学生的实际和教学要求,我在教学方式与学习方式上进行了大胆创新。

1. 教学方式。

本节课是在游戏公平这一主题下,通过学生参与活动体会事件发生的等可能性。教师要创设轻松氛围,利用游戏活动,激发学生的学习积极性,组织学生参与,与学生合作,引导学生对公平的游戏规则进行试验,分析、修改。

2.学习方式。

学生有时独立思考,有时与同桌进行游戏,有时小组交流、讨论,判断等,体现多样的学习方式。

3.评价方式。

对学生的活动情况,要给出恰当,适时的评价,同时引导学生之间相互评价,发挥评价的促进、激励的作用。

4.课前准备。

教师准备:多媒体课件、一副棋、骰子、硬币、转盘(三个)。

学生准备:骰子(每人一个)、硬币(每人一枚)、转盘(每人一个空白的)。

教学流程:

一、创设情境,进入游戏

师:同学们喜欢下棋吗?谁会下棋呢?今天,我们就进行一场下棋比赛,好吗?两名同学到前面来,(出示一副摆好的棋。)

师:让谁先走棋呢?

让学生稍加思考后说说自己的办法。

(预测:学生可能想到用“拳头、剪刀、布”、掷骰子、掷硬币等多种办法。)

教师对于学生的回答,只要是合理的,就要给出肯定,并加以引导。对于多样的办法,教师板书游戏名称。

师:你们想出了这么多办法,很不错。下面我们一起来看一行,这些办法都可以吗?

[设计意图:从学生喜欢的身边游戏入手,让学生来进行现场比赛,激发参与兴趣,进而提出“让谁先走棋呢”这一问题。先让学生自由表达想法,体会试验“游戏是否公平”的必要性。]

二、组织活动,开展游戏

游戏一:掷殴子

师:想一想,具体怎样做呢?

让学生自由说规则。

师:笑笑有一个办法:大于3点,小明先行;小于3点,小华先行、你们觉得这个办法好吗?

(预测:如果有的学生提出这个办法,就因势利导采用它;如果学生没有提出,教师作为合作者提出这个办法。)

师:与同桌试试这个办法,掷一掷骰子,要做好记录,

学生亲自试验,收集数据。

活动记录1:

教师走到学生中间,关注学生是否积极参与游戏活动的过程,对个别学生给予帮助和指导。尽量让学生保证游戏的随机性,要随意地掷出骰子。

学生展示活动记录,汇报试验情况。

学生有序汇报出活动过程及试验结果,教师要引导他们对试验结果进行分析。

(预测:学生在试一试后,初步感受到这个规则的不公平。通过讨论,有的学生能列出各有几种可能,大于3点的有3种可能:4,5,6;小于3点的只有两种可能:2,1;因此大于3点的可能性比小于3点的可能性大,所以这个游戏规则是不公平的。)

师:你们的想法正确吗?再做几次试验,将全班的试验结果汇总起来,确认一下好吗?

学生做试验,汇总试验数据。

[设计意图:为了使学生进一步体会这个规则的不公平,需要学生继续做试验验证、为了保证试验次数,有必要汇总全班数据。]

师:通过多次试验,证明这个方法不公平。那你们能修改笑笑的方法,使它对双方公平吗?

学生同桌间说一说后,汇报。

[设计意图:在确认规则不公平后,不失时机地让学生修改游戏规则,使它对双方公平。这样由浅入深,逐步加深学生对游戏规则公平性的体验。]

师:除了掷骰子外,我们再来判断一下其他的办法是否对双方公平。

游戏二:掷硬币

师:试一试,这个办法对双方公平吗?

学生做试验,并汇总全班数据。

活动记录2:

教师组织学生进行试验,引导他们讨论掷硬币的规则是否公平。

[设计意图:学生对“掷硬币”已有经验,直接看出它公平。但也应让学生做试验,并汇总全班数据。这里要激发学生反复探究的兴趣,引导他们对简单的实验进行多次的探究。这其实是在培养学生的科学素养,使他们向真正意义上的探究迈进。]

游戏三:转盘

师:我们还可以用转盘来设计对双方公平的游戏。

(1)下图是笑笑设计的转盘,请你为她确定规则,使游戏对双方公平。

出示图:

学生先独立确定公平的游戏规则,然后交流。

教师鼓励学生结合生活经验和试验数据,对规则是否公平进行讨论。

(2)淘气设计了下面的转盘,请你为他确定规则,使游戏对双方:

出示图:

学生自主设计。自由讨论,确定公平的游戏规则,

师:我们帮助淘气和笑笑确定了公平的规则,那你们想自己设计一个对双方都公平的转盘游戏吗?

(3)请你再设计一个对双方都公平的转盘游戏。

学生独立设计。

教师参与其中,了解学生活动情况,提醒他们要先设计转盘和确定规则,再试一试游戏和规则是否公平。

学生展示设计的转盘,并说明规则,其他学生一起判断是否符合要求。

[设计意图:先让学生对笑笑和淘气设计的转盘进行判断是否符合公平要求。然后给学生独立设计转盘游戏的机会。一是充分调动学生的参与热情,二是给他们自主探索、学习的机会,学有所用。]

三、实践应用,拓展游戏

师:请设计一个对双方都公平的其他游戏,在小组内玩一玩。

学生设计游戏,小组内活动。

师:想一想,在你的生活中,有哪些需要用公平的游戏来确定的事情?

学生先自己想一想,再与同学交流。

(预测:学生可能想到生活中许多游戏,如:足球比赛确定双方场地时,可以用“单双”游戏;家里人看电视选择频道出现争执时,可以用“抽扑克牌比大小”游戏决定;去奶奶家还是外婆家过年,可以用“抓阄”游戏等。)

教师根据学生的发言,适时评价。对一些游戏要加以引导,在公平基础上,要尊重长辈,不要任性等,随机进行情感教育。

师:回到家里和父母继续游戏,好吗?

[设计意图:组织学生自己设计一些对双方都公平的游戏,给全体学生再次参加游戏活动的机会。并引导学生联系生活实际,关注身边的不确定现象,应用所学去解释、解决一些简单问题。]

反思:

科学探究,一次就够了吗?答案是不够。从一次到十次或更多,这里面有科学的较真,有思维的缜密,有大胆的质疑,有反复的坚韧……就如抛硬币的实验,大人们都知道抛硬币的概率是50%,但同样的实验让中国孩子与外国孩子做,中国孩子一般只做两次,最多也不会超过十几次,但外国的孩子可以多次重复,可以做几百次,几千次,甚至上万次。

这种现象,很多中国人认为没有必要,认为可笑或者浪费时间。笑过后,想一想:“为什么中国人科技创新的能力不强?”也许就是我们的教学中缺少了一份执著、一份坚韧。

所以在执教本节课中,我试着用“提问、预测、试验、解释、交流”这一过程来引导学生开展掷骰子、掷硬币和转盘三个游戏活动。

在开展掷骰子游戏时,我发现学生对试验往往只愿做几次,就把结果记录了下来,这样做,显然太草率、不严谨。我们知道,任何活动,一次的结果都只是偶然的,而不是必然的,科学现象是可以多次重复的,科学结论要经得起反复验证的。所以哪怕是最简单的活动,一次也是不能说明问题的。

为了使学生进一步体会这个规则的不公平,需要学生继续做试验验证。为了保证试验次数,有必要汇总全班数据。于是我就增加了一个环节,让学生重复多次做看似简单的试验,这其实是在培养学生的科学素养。通过反复的试验,学生不但判断出这个游戏不公平,还能进行修改,并且也很好地体会了等可能性和不确定现象的特点。

同时,我也注意到,活动.中如果能加强对学生的引导,使他们动手、动脑、动口结合起来,比较、借鉴、反思,会使活动更有实效性。

评析:

1.充分利用学生身边的情境。

教材提供的是小明和小华两个小朋友进行下棋比赛。根据实际情况,教师为了激发学生的参与兴趣,换为让学生来进行现场比赛,进而提出“让谁先走棋呢”这一真实问题。

更大程度上唤起学生参与热情及对问题的探究欲望。然后,先让学生自由表达想法,体会试验“游戏是否公平”的必要性。

2.联系实际,充分进行数学活动。

学生对“掷硬币”已有经验,直接看出它公平。教师给学生提供了更多的探索研究机会,让他们做试验,并汇总全班数据。

教师注重激发学生反复探究的兴趣,引导他们对简单的实验进行多次的探究。这其实是在培养学生的科学素养,使学生向真正意义上的探究迈进,

3.关注学生的感受。

教师在课的最后,组织学生自己设计一些对双方都公平的游戏,给全体学生再次参加游戏活动的机会。

也引导学生联系生活实际,关注身边的不确定现象,应用所学去解释、解决一些简单问题。在这个过程中,教师关注了学生的感受,随机渗透思想教育。

篇6:概率教学设计

第一课时

教学目标:

知识与技能

学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

过程与方法

经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。

情感、态度与价值观

通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。

教学重点:

分析等可能性

教学难点:

能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。

教学过程

一、复习引入:

1、古典概型的特点:

①出现的结果有限多个;

②各结果发生的可能性相等。

2、练习:P131第1、2题;P132第2、3题。

老师:等可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法.这就是本节课要学习的知识。

二、新知讲解:

例1、如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把他的去域记为A区,A区外记为B区,,下一步小王应该踩在A区还是B区?

分析:首先要弄清游戏的规则;其次,求两个概率,要研究它们是否符合古典概率的两要素

解:(略)

例2、掷两枚硬币,求下列事件的概率:

(1)两枚硬币全部正面朝上。

(2)两枚硬币全部反面朝上。

(3)一枚硬币正面朝上,一枚反面朝下。

分析:先让学生自己实验,自然会引出下列问题:“同时掷两枚硬币”和“先后掷两枚硬币”,这种实验的所有可能结果相同吗?答案是:在本题中这两种实验所有可能的结果是一样的。

练习:P134第1、2题。

三、归纳总结:

(一)等可能性事件的两个的特征:

1.出现的结果有限多个;

2、各结果发生的可能性相等;

(二)列举法求概率.

1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.

2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图(下课时将学习)等.

四、课后巩固:《课本》P13习题25.2复习巩固1、2题。

课后反思:

本节课主要是巩固古典概型问题的计算方法和在游戏中的应用,所以开始时简要回顾上节课有关知识,尽量让学生发表意见,教师据情况点评。

例1为扫雷游戏,具有较强的趣味性,让学生自学,教师帮助分析点拨并稍作拓展延伸,以激发兴趣,提高分析能力。本节课完成效果很好。

篇7:3.3 可能性和概率教学设计

【教材分析】

(一)教学内容分析:

可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件发生的可能性大小来初步认识概率的意义,导出等可能性事件的概率公式;知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,计算等可能事件的概率。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小→用事件发生的可能性的大小定义概率→在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

(二)学情分析

考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

【教学目标】

1、 了解概率的意义

2、 了解等可能性事件的概率公式

3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

4、进一步认识游戏规则的公平性

【教学重点、难点】

重点:概率的概念及其表示

难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

【教学过程】

(一) 创设情境,引入新知:

引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

(二) 师生互动,探索新知:

从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

(1)小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

(2)小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

(3)通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

接着类似的可以让学生自己结合生活经验独立举一些例子。

(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示,如事件 发生的概率也记为 。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的`数学意义是一种比率,这个概率公式适用的前提条件――事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。基本步骤是:①列出所有可能的结果总数,②在总数中数出所求概率的事件所包含的结果总数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四)练习反馈,巩固新知:

做一做第1~2,课内练习1,作业题1~2准备5分钟后学生口答,教师点拔。

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占一半的转盘,让转盘自由转动2次,指针2次都落在红色区域的概率是多少?一次落在红色区域,另一次落在黄色区域的概率是多少?

分析:(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色区域和落在红色区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色区域的可能结果只有1种,

所以2次都落在红色区域的概率 ;

一次落在红色区域,另一次落在黄色区域的可能有结果2

种,所以一次落在红色区域,另一次落在黄色区域的概率 。

变式:在例2的条件下,再问:第一次落在红色区域,第二次落在黄色区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(六)练习反馈,熟能生巧。

1.作业题2、3学生自行完成于书上(简写);

2.课内练习2,作业题4让二学生上黑板板演,重在画树状图或列表法利用等可能性事件的概率公式求解;

3.深度思考作业题5(考虑多种解法)。

(七)反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

篇8:概率的意义的教学设计

概率的意义的教学设计

教学目标:

〈一〉知识与技能

1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值

2.在具体情境中了解概率的意义

〈二〉教学思考

让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频 率与概率的关系.

〈三〉解决问题

在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.

〈四〉情感态度与价值观

在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

【教学重点】在具体情境中了解概率意义.

【教学难点】对频率与概率关系的初步理解

【教具准备】壹元硬币数枚、图钉数枚、多媒体课件

【教学过程】

一、创设情境,引出问题

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.

学生:抓阄、抽签、猜拳、投硬币,

教师对同学的较好想法予以肯定.(学生肯定有 许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳.

用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定正面朝上还上反面朝上,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.

质疑:那么,这种直觉是否真的是正确的呢?

引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.

说明:现实中不 确定现象是大量存在的, 新课标指出:学生数学学习内容应当是现实的、有意义、富有挑战的,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.

二 、动手实践,合作探究

1.教师布置试验任务.

(1)明确规则.

把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.

(2)明确任务,每组掷币50次,以实事求是的态度,认真统计正面朝上 的频数及 正面朝上的频率,整理试验的数据,并记录下来..

2.教师巡视学生分组试验情况.

注意:

(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.

(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.

3.各组汇报实验结果.

由于试验次数较少,所以有可能有些组试验获得的正面朝上的频率与先前的猜想有出入.

提出问题:是不是我们 的猜想出了问题?引导学生分析讨论产生差异的原因.

在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.

解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.

4.全班交流.

把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.

表25-2

抛 掷次数 50 100 150 200 250 300 350 400 450 500

正面向上的频数

正面向上的频率

想一想1(投影出示). 观察统计表与统计图,你发现正面向上的频率有什么规律?

注意学生的语言表述情况,意思正确予以肯定与鼓励.正面朝上的频率在0.5上下波动.

想一想2(投影出示)

随着抛掷次数增加,正面向上的频率变化趋势有何规律?

在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,正面朝上的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,正面朝上的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的`.我们就用0.5这个常数表示正面向上发生的可能性的大小.

说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.

为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.

其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).

表25-3

试验者 抛掷次数(n) 正面朝上次数(m) 正面向上频率(m/n)

棣莫弗 2048 1061 0.518

布丰 4040 2048 0.5069

费勒 10000 4979 0.4979

皮尔逊 1 6019 0.5016

皮尔逊 24000 1 0.5005

通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小( 概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.

在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.

5.下面我们能否研究一下反面向上的频率情况?

学生自然可依照正面朝上的研究方法,很容易总结得出:反面向上的频率也相应稳定到0.5.

教师归纳:

(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,正面向上与反面向上的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.

(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.

说明: 这个环节,让学生亲身经历了猜想试验收集数据 分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.

三、评价概括,揭示新知

问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?

学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.

通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.

归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.

那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

注意指出:

1.概率是随机事件发生的可能性的大小的数量反映.

2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

想一想(学生交流讨论)

问题2.频率与概率有什么区别与联系?

从定义可以得 到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.

四.练习巩固,发展提高.

学生练习

1.书上P143.练习.1. 巩固用频率估计概率的方法.

2.书上P143.练习.2 巩固对概率意义的理解.

教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.

五.归纳总结,交流收获:

1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.

2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.

【作业设计】

(1)完成P144习题25.1 2、4

(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.

【教学设计说明】

这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的 频率去刻画事件发生的可能性大小,从而得到概率的定义.

1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验收集数据分析结果的探索过程.这符合《新课标》从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程的理念.

贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情 ,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.

2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频 率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.

3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价 学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.

篇9:三步计算教学设计

教学内容:

教学目标:

通过学习使学生初步掌握解答三步计算应用题的基本步骤,学会验算的基本方法,提高学生正确地解决简单实际问题的能力。

教学重点:掌握解答三步计算应用题的基本步骤

学会验算的基本方法

教学难点:验算的基本方法

教学用具:幻灯、小黑板

教学过程:

一、准备练习

先补条件再解答

生产小组要加工780个零件。

1、,实际用了多少天?

2、,实际每天加工多少个?

师:补条件应根据已知的条件和要求的问题来进行。

二、新课学习

1、出示例1:玩具厂要生产3000套电动智力玩具,计划用12完成,实际每天比计划多生产50套,实际用了多少天?

⑴默读题目,想一想题目告诉我们哪些条件,要求什么问题?

⑵通过读题你知道了什么?

⑶提问:要求“实际用了多少天?”需要知道哪两个条件?

(工作总量、工作效率)

这两个条件都知道吗?应先求什么?

(先求实际每天的工作效率)怎样求呢?

⑷学生列式计算并要求学生列出综合算式。

反馈:教师出示解答过程

请一位同学列出综合算式。

提问:这些应用题比较复杂,容易出错,所以要进行检验,你觉得如何来检验呢?

先让学生讨论方法:验算已知条件是否相同。

⑸让学生自主选择一种方法进行验算

反馈时让学生说清验算什么及每一步表示的意义。

2、试一试

要求学生先解答,再验算。

服装厂要生产1000套衣服,计划每天生产40套,实际比计划少用了5天。实际每天生产多少套?

反馈时着重让学生自己讲解题方法及验算的方法。

3、总结解答应用题的步骤

⑴学生同桌讨论解答应用题的步骤

⑵指名交流

在交流中逐步出示

课本第21页方框中的内容

三、巩固练习

1、先说解题思路再列式

⑴一本故事书有120页,计划每天读15页,实际每天比计划多读5页。实际用了多少天?

⑵一本故事书有120页,计划8天读完,实际比计划少用2天。实际每天读多少页?

⑶一本故事书有120页,计划8天读完,实际每天比计划多读5页。实际用了多少天?

⑷一本故事书有120页,计划每天读15页,实际比计划少用2天。实际每天读多少页?

2、课堂练习

练一练第2、3、4、5题

四、总结

这节课你学会那些新知识?

篇10:简单的计算教学设计

教学内容:

人教版九年义务教育小学教科书数学一年级下册第50-51页例5、例6、例7。

教学目标:

1.知道人民币单位间的换算,会进行一些简单的计算。

2.知道物品价格的表达形式。

3.通过模拟购物活动,初步体会人民币在社会生活、商品交换中的作用。

教具学具准备:多媒体课件;教具图片、卡片;学生学具袋(内装各种面值的模拟人民币)

教学过程:

一、复习引入

上节课我们认识了人民币,你能说说人民币的单位有那些吗?

按质地可以分为哪两类?

二、新课教学

(一)联系生活,经验转换知识

小凡喜欢吃奶糖,小卖部里1角可以买1颗,今天妈妈给了小凡1元2角,小凡可以买几颗奶糖?(课件出示相关图片)

你是怎么想的?(1角1颗,1元=10角,1元2角=12角,买10颗,还有2角买2颗,一共可以买12颗)

小红的奶奶给了她一些1角的零钱,她数一数一共有12角,小红想换成整钱,可以换成几元几角?(课件出示相关图片)

你是怎样想的呢?(10角=1元,12角=1元2角,可以换成1元2角)

同学们真聪明!生活中我们经常需要换钱,现在我们就来做个换钱游戏。

教师指名一名学生配合先示范:生:你好!我有3元8角,想换成角票。师:当然可以,给你38角。你算算对吗?生:1元等于10角,3元就是30角,再加上8角就是28角,对了,谢谢你。

师:你好!我想把我的26角零钱换成整钱可以吗?生:没问题。10角换1元,20角换2元,一共换2元6角。

同座学生模仿做换钱游戏。

(二)设境激趣,合作实践学习

谈话过渡:学会换钱,老师带大家一起去逛逛小朋友都喜欢的地方——东东超市

课件出示货品图片和价格标签(例6),让学生认一认,学生自由说自己认识的价格标签,表示多少钱?

教师相机引导学生找到规律:小圆点左边表示几元,小圆点右边第一位表示几角,第二位表示几分。现在一般情况下物品的价格都标到角。

游戏巩固:看看谁的反应快(完成50页做一做)

把写有价格的物品图片和对应写有几元几角的卡片发给不同的学生,拿物品图片的学生先举起来,拿对应的卡片的学生快速反应。全班一起订正。

谈话过渡:超市里还有许多东西,课件出示物品及标价(例7,51页及“做一做”内容)现在我们同座每2个同学为一组任意选购2件不同的物品,自己计算出应付的钱到“收银台”(老师处)结帐。

学生分小组购物,老师在“收银台”检查每组学生的计算和拿出的钱数是否正确,对有问题的学生马上辅导。

三、知识整理

引导学生使用教材,复习本课学习内容。今天同学们学得真好!一节课可学了不少知识呢!同学们翻开书,看一看50页和51页的例5、例6和例7,你能把书上的空很快地填一填吗?

学生看书填空后,课件出示书上50页、51页内容,师生一起逐空订正,从而达到整理知识,总结全课的目的。

四、课后练习

在家长的陪同下做一次实际购物体验,要求自己看价格标签,自己计算金额,自己付帐。

设计意图:

一、人民币和日常生活息息相关,我国又有给孩子“压岁钱”的习俗,许多家长喜欢带孩子上超市并让他们在一定范围自由选购自己喜欢的商品,让许多学生较早有了钱的概念,会看价格标签,部分学生甚至有了实际购物经验,因此,这节课设计中尽量放手让学生自主学习,充分发挥学生的学习潜力,借助学生已有知识和经验,又好又快的进行学习。

二、从学生实际经验入手, 唤醒学生的思维,把生活中的经验转化为知识,轻松突破元和角之间的换算难点。

三、创设情景,直接出示商品及价格标签,在学生回忆平时看到的商品价格的表示方法中,让学生体验到数学与日常生活的密切联系,同时,通过已经知道价格表示方法的学生来带动其他学生学习,体现学生的自主学习。

四、人民币的计算离不开购物,让学生在模拟购物的过程中完成简单的加法计算。通过选购不同商品,需要不同的付钱方法,深刻体会进率的换算,让知识在操作中得以内化,学生学了也不易忘记。

五、教学中所设计的游戏和购物活动,都采用2人合作方式,可以让学生合作学习,互相带动。

六、最后一个环节的设计是让学生学会阅读、利用教材,同时通过完成填空回忆整理本课所学知识。

篇11:简单的计算教学设计

教学内容: 教材第132页复习第1~3题。

教学目标:

1、使学生进一步掌握多位数的读法和写法,会比较两个数的大小。

2、会将整万或整亿的数改写成用“万”或“亿”作单位的数,会用“四舍五人”法把万位或亿位后面的尾数省略,求出它的近似数。

教学重点 将整万或整亿的数改写成用“万”或“亿”作单位的数,用“四难点:舍五人”法求一个数的近似数。

教学过程:

一、揭示课题

我们已经学完了本册教村的内容.从今天起进行期末复习,整理归纳本学期所学的知识。这节课先复习多位数的认识和简单的计算,通过复习进一步掌握多位数读法和写法。熟练进行整万或整亿数的改写,并会用四舍五人法把万位或亿位后面的尾数省略,求出它的近似数。

二、复习多位数的读写法则及大小比较

1、说出从个位到千亿位的数位顺序,以及每个数位的计数单位。每相邻两个计数单位间的进率是多少?

2、按照我国的'计数习惯,从右边起每四位一级,个级、万级和亿级各有哪些数位?

3、做期末复习第1题第一横行3题。

(1)指名3人板演,其余学生做在练习本上,让学生说一说是怎样读出这几个数的?

(2)问:谁能概括一下怎样读出—个多位数?

4、做期末复习第2题第1竖行3题。

(1)指名3人板演,其余学生做在练习本上。让学生说一说是怎样写出这几个数的?

(2)问:谁能概括一下怎样写出一个多位数。

5、在下面○里填上“>”、“<”或“=”。

68700○101000 487000000○486000000 70000000○7000万

(1)学生练习。

(2)问:怎样比较两个数的大小。

三、复习多位数的改写及求一个数的近似数

1、把下面各数改写成“万”或“亿”作单位的数。

4800000 37000000000 12800000000 1370000

(1)学生在练习本上做。

(2)让学生说一说怎样把一个整万或整亿的数改写成“万”或“亿”作单位的数。

2、做期末复习第(3)题两组题。

(1)用“万”作单位写出下面各数的近似数,还可以怎么问?

(2)做每组中的第一题,指名板演。

(3)让学生说一说用什么方法求一个数的近似数?怎样求一个数的近似数?

3、比较多位数的改写与求近似数,它们有什么区别?

四、复习积和商变化的规律和口算

1、什么是积变化的规律?什么是商不变的规律?

2、填空。

(1)①甲数×乙数=40,如果甲数不变,乙数扩大4倍,积是( );如果甲数不变,乙数缩小4倍,积是( )。

②甲数×乙数=40,如果甲数扩大10倍,乙数缩小5倍,积是 ( )。

(2)①甲数+乙数=40,如果甲数和乙数都扩大10倍,商是( )。

②甲数÷乙数=40,如果甲数和乙数都缩小100倍,商是( )。

3、口算:

(1)360+280 540-170 48万+32万 48万-32万

200×130 400×120 500×160 800×500

8400÷200 8400÷20 3000÷50 3000÷500

①说一说整百整十数的加威法的口算。

②说一说200×130和8400÷200是怎样口算的?

(2)用简便方法计算下面各题。

240×140 5980+130 75700+210

小结:应用积变化及商不变规律可以使因数末尾有0的乘法,被除数,除数末尾有0的除法笔算简便。

五、课堂总结

这节课复习了什么内容?怎样把一个较大的数改写成“万”或“亿”作单位的数?改写时要注意什么?用“万”或“亿”作单位求近似数要注意什么?

第一课时作业设计:

一、期末复习第l~4题剩下的题目。

二、补充。

1、把400800 400080 480000 40800 408000按从大到小排列。

2、用3个8和两个0组成一个五位数,一个零都不读是( );只读一个零是( );读出两个零是( )。

3、一个长跑运动员20分钟跑2800米,照这样计算要跑4米,要跑多少分钟?

篇12: 简便计算教学设计

教学目标:

1、在简便算法中,把一个数改成两个合适的数的积或商的方法。

2、培养分析、判断、推理的能力,增强使用简便算法的择优意识。

教学重、难点:

1、简便算法的算理。

2、在简便算法中,把一个数改成两个合适的数的'积或商的方法。

教学准备:

教师准备:主题图

学生准备:课前做好预习工作,并记录下自己不理解的地方。

教学过程:

一、质疑

(出示主题图及题目:王老师买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒32元。王老师一共买了多少个羽毛球?你还能提出什么数学问题吗?)

师:在昨天的预习过程中,你遇到了哪些难题?

生1:“12×25”中,我不知道应该选择哪个数进行改写。

生2:我想知道数的改写有什么好的方法?

……

师:同学们能提出这么有价值的问题来,真是了不起!

二、解疑

师:计算“12×25”时,谁有妙招教给大家?谁能帮忙解决刚才同学们遇到的难题?

(四人小组合作讨论交流;各小组派代表汇报。)

小组1:我们组能帮忙解决第一个难题。只要记住以下几组常见凑整的数就容易了:5×2=10,25×4 =100,25×8=200,125×8=1000……

计算“12×25”时可以为25找朋友4凑整,就是把12改写成3×4,即:

12×25

=(3×4)×25

=3×(4×25)

=3×100

=300

师:集体的力量真大,把这个难题解决了。真羡慕你们的小集体!

小组2:也可以把25改写成100÷4,就是:

12×25

=12×(100÷4)

=12×100÷4

=1200÷4

=300

师:这种方法也很巧妙!

小组3:我们组把12改写成60÷5:

12×25

=25×(60÷5)

=25×60÷5

=1500÷5

=300

师:你们的回答同样精彩!

小组4:我们组把25改写成5×5:

12×25

=12×(5×5)

=12×5×5

=60×5

=300

师:真不错!

小组5:我们组把25改写成50÷2:

12×25

=12×(50÷2)

=12×50÷2

=600÷2

=300

师:有自己的见解,很好!

小组6:我们组把12改写成2×6:

12×25

=(2×6)×25

=2×25×6

=50×6

=300

师:独具匠心,好!

小组7:我们组把12改写成6+6:

12×25

=(6+6)×25

=6×25+6×25

=150+150

=300

师:妙极了!

小组8:我们组把12改写成4+8:

12×25

=(4+8)×25

=4×25+8×25

=100+200

=300

师:真是绝了!

小组9:我们组把25改写成20+5:

12×25

=12×(20+5)

=12×20+12×5

=240+60

=300

师:真行啊!

小组10:我们组把12改写成10+2:

12×25

=(10+2)×25

=10×25+2×25

=250+50

=300

师:了不起!

小组1:我们组还有一种方法,把12改写成4+4+4:

12×25

=(4+4+4)×25

=4×25+4×25+4×25

=100+100+100

=300

师:多么富有创造性的思考,你们真行!

小组3:我们组也还有一种方法,把25改写成5+5+5+5+5:

12×25

=12×(5+5+5+5+5)

=12×5+12×5+12×5+12×5+12×5

=60+60+60+60+60

=300

师:你们组的想法很独特,老师佩服你们!

……

师:小疑有小进,大疑有大进!同学们小组合作,集思广益,打倒了学习上的“拦路虎”,个个都是好样的!

三、拓展

师:你还能提出什么数学问题吗?

生1:每枝羽毛球拍多少钱?

生2:买羽毛球一共花了多少钱?

……

(同桌合作讨论、交流,汇报列式。)

第一个问题:330÷5÷2

第二个问题:32×25

师:光学不练假把式!现在就请同学们用我们刚才学到的方法计算这两道题。

(学生独立完成;集体交流点评。)

四、总结

师:说说这节课你的收获(感想)!

篇13:简单的计算教学设计

教学目标

1、能正确地进行关于元、角、分简单的加、减法计算。

2、理解元、角、分的加、减法的计算的算理。

3、使学生能够感受到数学来源于生活、服务于生活。

教学重难点

正确、合理、灵活地进行元、角、分的加、减法计算。

教学工具

PPT课件

教学过程

(一)导入:(铺垫助学)

师:同学们都去过超市吧,今天我们来当一回售货员,不过我要考考你们,看你们是不是一名合格的售货员。(出示课件)

1、课件出示人民币面值图片,说出人民币币值。(学生举手抢答)

2、填空:(指定小组一个个回答)

1元=(10)角,10角=(1)元

2元=(20)角,20角=(2)元

7元=(70)角,40角=(4)元

5元=(50)角,80角=(8)元

9元=(90)角,60角=(6)元

(二)例5(以趣激学)

1、彤彤要买一袋牛奶,牛奶是1元两角,可是彤彤没有面值一元的人民币,只有一些面值1角的人民币,他该怎么给钱呢?

2、让学生思考后举手发言,说出方法。(板书:人民币简单的计算)

3、教师再次根据学生描述的方法进行课件直观演示。

1元2角=12角(板书),让同学齐读一遍,并让几个后进生复述。

4、彤彤转天又买了一杯酸奶,给售货员18角,你们知道酸奶是几元几角吗?

18角=1元8角(板书)

5、点名回答,说出原因,并让后进生复述。

6、练习(指定小组一个个回答)

1元3角=(13)角,15角=(1)元(5)角

4元6角=(46)角,24角=(2)元(4)角

6元1角=(61)角,53角=(5)元(3)角

5元7角=(57)角,89角=(8)元(9)角

9元5角=(95)角,67角=(6)元(7)角

7、书写反馈:

数学书第57页做一做第一题,注意书写姿势,比一比谁书写最快、最工整。写好后立刻坐好。

(三)例6(顺思导学)

1、出示图片。

2、提出问题1:

(1)买一个圆气球和一个桃心气球,要多少钱?

(2)让学生思考后回答,并说出方法。

(3)出示课件,并提示:单位名称都是“角”,可以直接计算。

(板书:5+8=13角,13角=1元3角)

3、提出问题2:

(1)笑脸气球比粉色气球贵多少钱?

(2)让同学描述“贵”是什么意思?

(3)同位讨论,这个问题该如何解答。

(4)同学代表发言,教师给予适当纠正和引导。

(5)教师再度用课件演示同学们的方法,并提示:单位名称不同时,要先转化成相同的单位名称,再计算。

(板书:1元=10角,10—6=4角)

4、提出问题3:

(1)买一个笑脸气球和一个鸭子气球,要多少钱?

(2)让同学们仔细想一想,然后把自己想到的方法写在小纸条上,教师巡视。

(3)利用投影展示部分学生作业,共同讨论他们是否做的正确,让同学说理由。

(4)利用课件展示做题过程,(板书:1元+3元1角=4元1角)

(四)练习:(应用促学)

数学书第57页第二题1、2问。

(六)课堂小结:(梳理评学)

你们都是非常聪明的售货员,帮顾客解决了,买两样东西如何计算一共多少钱?一个商品比另一个商品贵多少钱?顾客们认为你们态度满分,服务满分,下课后,由组长为所有的售货员们发放优质奖章。

板书

人民币简单的计算

1元2角=12角,18角=1元8角

5+8=13(角),1元=10角

13角=1元3角,10—6=4(角)

1元+3元1角=4元1角

初中概率教学设计

概率教学设计

数学利息计算教学设计

初中数学优秀教学设计

人教版四年级简便计算教学设计

分数的简单计算教学设计

人教版简单的计算教学设计

人教版长方形面积计算教学设计

人教版用计算器计算教学设计

长方形面积的计算的教学设计

初中概率计算优秀教学设计(精选13篇)

欢迎下载DOC格式的初中概率计算优秀教学设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档