找次品数学课件

| 收藏本文 下载本文 作者:假了吧唧

下面小编为大家带来找次品数学课件(共含12篇),希望大家能够受用!同时,但愿您也能像本文投稿人“假了吧唧”一样,积极向本站投稿分享好文章。

找次品数学课件

篇1:找次品教学课件

教学内容:人教版数学五年级下册数学广角第111-113页的内容。

教学目标:

1.通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

2.学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

3.通过解决实际问题中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重难点:借助实物操作、画图等活动理解并解决简单的“找次品”问题,在此基础上归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。

教学准备:天平、3瓶口香糖、多媒体课件、学生每人3个圆纸片。

教学过程:

一、创设教学情境 提出数学问题

师:大家听说过次品吗?(板书:次品)你是怎样理解“次品”的?

师:考考你的眼力!(找次品)(课件)

师:次品有的是外观瑕疵,有的是成分不合要求,还有的是产品的质量与正常的不同……。 次品虽小,危害却大。今天我们要找的是众多外观一样的产品当中,隐藏的一个质量不合格的次品。(板书课题:找次品)

二、组织有效活动 探究数学本质

(一)初步体会“找次品”的原理

师:通过以前的学习,我们知道从简单问题入手容易发现规律。

师:(课件:3瓶口香糖)3瓶中有一个已经吃过了,质量较轻,不能作为正品,你有什么办法找到这瓶次品吗?

可能出现:掂一掂、数一数、称一称。(介绍天平:正常情况下,天平左盘称物品,右盘放砝码。不过我们今天是天平两边放相同数量的物体。伸出你的手示意,如果……说明;如果……说明。)

(1)板书出示:3瓶至少称几次能保证找出次品来?

“至少”、“保证”什么意思?你怎么理解?

(2)你觉得需要称几次呢?怎么称?试一试。

指名回答,可以引导学生加上动作体会,同时演示课件。

(3)师生共同小结(同时板书):

瓶数是3瓶(板书:瓶数),先在天平两边各放一瓶,也就是先把它们分成三份(板书:分法),每份1个。板书:3( 1,1,1) 需要1次。(板书:次数:1次) 这个环节总体板书如下:

瓶数   分法   至少要称的次数

3   3(1,1,1)  1

师:天平有几个托盘?2个托盘,3个物品,为什么称一次就找出次品了?我们来找找原因:

(因为天平有2个托盘,所以次品的位置无外乎左盘、右盘或天平外,称一次就能确定出次品在三个位置中的哪一个。)

(二)感悟“找次品”的方法

(1)师:刚才我们研究的是3瓶,现在有8瓶,还是其中一瓶轻一些,用天平称,至少称几次保证可以找出这一瓶次品?

(2) (操作提示) 同桌合作完成。

①你把待测物品分成几份?每份是多少?选哪些份量?

②假如天平平衡,次品在哪里?

③假如天平不平衡,次品又在哪里?

(3)反馈:你把它分成了几份?要称几次?(依次交流不同方法,板书)

瓶数   分法和过程   至少要称的次数

8  8(3,3,2) 3(1,1,1)   2

8  8(4,4) 4(2,2) 2(1,1)  3

8  8(2,2,4) 4(2,2) 2(1,1)  3

8  8(1,1,6) 6(1,1,4) 4(1,1,2) 2(1,1) 4

师:(指4,4和3,3,2)对比这两种分法,同样是称一次,8(4,4)排除1份,把次品锁定在4个之中,而8(3,3,2)排除2份,把次品锁定在3个或2个之中,看来要使称的次数最少,就要做到称一次把次品锁定在更小的范围内,这说明把待测物品分成3份比较好!

(4)师:如果要从9瓶中保证找出1瓶次品,至少要称几次呢?能不能脱离学具,直接用简洁的方法表示思路?

学生汇报,课件展示。

三、致力问题核心 建立数学模型

师:刚才我们知道了把待测物品分成3份,称一次就可以确定次品所在的位置,大家对比一下9(4,4,1)和9(3,3,3),同样是分成3份,为什么后一种需要称的次数少?(生交流)

(称一次就能确定出次品在三个位置中的哪一个,因为要保证找出次品,就要考虑运气不好的情况,做最坏的打算;要使称量的次数最少,就应该使三个地方的个数尽量同样多。这样,每次称量后就把次品确定在更小的范围内。不管次品在三个地方中的任何一个,问题都能转化成“从总数的三分之一(左右)里找次品”。)

师:那你能试着总结一下找次品的最优策略吗?观察9(3,3,3)和8(3,3,2)(把待测物品尽量平均分成3份)

师:太了不起了!通过实验、讨论和交流,我们不仅解决了问题,还找到了解决问题的最优策略。

师:用我们发现的方法再来实验一次:从10瓶或11瓶中找次品,任选一题解决。(交流)

师:虽然待测物品的总数不同,但称一次后都转化成了从4个中找次品,所以都是至少称3次。

四、设计有效检测 解决实际问题

1、有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平秤,至少几次保证可以找出这盒饼干?

2、有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

3、有81枚金币,其中有一枚是假金币(比真金币轻一些),至少称几次保证能找出这枚假金币?(机动)

五、升华经验成果 深化数学内涵

师:我们所探究出的找次品的方法其实和四年级所探究的烙饼问题、田忌赛马问题等一样,就是寻找解决问题的最优策略,因为这样能够事半功倍!

师:其实待测物品的数量与至少要称的次数之间是有规律的(出示“你知道吗?”)大家课下预习一下,下节课我们再研究。

板书设计

找次品

瓶数  分法与过程  至少要称的次数

3  3(1,1,1)  1

8  8(3,3,2) 3(1,1,1)  2

9  9(3,3,3) 3(1,1,1)  2

篇2:找次品教学课件

教学内容:

《人教版数学五年级下册》 第134~135页及136页第1、2题。

教材分析:

《找次品》是人教版数学五年级下册第七单元数学广角的内容.现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等.这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系.优化是一种重要的数学思想方法,运用它可有效地分析和解决问题.本节课以“找次品”这一操作活动为载体,让学生通过观察,猜测,试验等方式感受解决问题策略的多样性,在此基础上,通过归纳,推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力.

学情分析:

每一册教材都会编排《解决问题的策略》单元,所以学生已经不是第一次接触,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。此外,本节课中会涉及到的 “可能”、“一定”等知识点,学生已学过。

新课程实施以来,小组的合作交流、自主探究的学习方式大部分学生都已接受,普遍成为学生比较喜爱的学习方式。在小组合作学习过程中,学生能够较好地分工、合作、交流,较好地完成探究任务。

教学目标:

1、能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

2、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重点:

经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

教学难点:

脱离实物,借助纸笔帮助分析“找次品”的问题。

教学准备:

教师用具:3盒口香糖、课件。

学生用具:若干圆片。

教学过程:

一、创设情境,生成问题。

1、初步认识“找次品”的基本原理

师:我这有3瓶口香糖,其中有一瓶被我吃掉了3片,另外两瓶是没吃过的,只有一瓶少了3片,有什么办法把这瓶少的找出来?

[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平“称”的方法最好,知道并不需要称出每瓶口香糖的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

生:数一数或掂一掂。

生:天平称一称。

师:天平?大家见过没有?出示课件1。

天平的两端有两个……(托盘),若果两个托

盘上的物体一样重的话,天平会怎么样?

(平衡),假如不一样重的话?(天平会一边高一边低),高的那边物品?(轻)。低的那边物品?(重)。

2、引导学生探索用天平找次品的方法。

同学们想一想,如果利用“天平”怎样找出少的这一瓶?

师:(生纷纷举手)聪明的同学真是非常多,想到的同学小声的把你的.方法跟同桌或小组之间介绍一下!

生讨论中……

师:现在把你的方法跟全班分享一下!

生1:随意拿2瓶,如果天平平衡,说明另一瓶是少的那一瓶。(师重复学生的话,并问学生答,加深学生印象。)

师反问:随意拿2瓶,这两瓶一定会在天平上平衡吗?

生2:随意拿2瓶,天平也可能一边高一低的,高的那边就是少的那一瓶。

(师重复学生的话,并问学生答,加深学生印象。)

师小结:随意拿两瓶放在天平上,可能出现几种情况?(2种)。

可能天平会?(平衡)。那说明什么?(天平上的这两瓶一样重)。还说明?(剩下的那瓶就是吃了3片的)。

如果天平不平衡?那说明什么?(其中有一瓶是吃了3片的)。哪一瓶是吃了3片的?(升高的那一瓶)。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究,推理活动才能顺利进行。]

师小结:我们的同学真的是非常的聪明!看来从三瓶中找出少了3片的方法有数一数,掂一掂,用天平称,你觉得那个方法好?为什么?(天平还有什么优点?)

3、揭示课题。

师:其实在生活中,就有这样一些问题,有一些物品外观看似完全一样,但其中常常混着一个重量不同的,要么轻一点,要么重一点,要把它找出来,我们最好的工具是什么?(天平)。我们把这一类问题都叫做“找次品”的问题。这节课我们一起来研究如何使用天平“找次品”。(板书课题:找次品)。

二、“找次品”的解决方法。

1、从5个物品中找次品。

师:接下来,我的问题有难度啦!现在我们这儿有几瓶口香糖?(5瓶)。其中有一瓶是老师吃过3片的,要从这5瓶中把这瓶吃过的找出来,有没有办法?(有)。什么办法?(使用天平称)。

2、课件出示问题,引导学生利用学具自主探索:拿出5个圆片代替5瓶口香糖,思考一下,怎样找出次品?

师:好,现在拿出我们的学具:5片圆片,代替我们5瓶口香糖。想象一下怎样使用天平找出那一瓶少的口香糖。在动手的同时思考一下这几个问题:

(1)把物品分成几份?每份是多少?

(2)假如天平平衡,次品在哪里?

(3)假如天平不平衡,次品在哪里?

(4)至少称几次,能保证找出次品来?

生说师板演。

师小结:老师把生1的话记录了下来,他把5平口香糖分成3份,分别是:2瓶,2瓶,1瓶。把其中前两份放在天平的两端(左边2瓶,右边2瓶),(生说师板演:5(2.2.1))

如果天平平衡说明什么?(剩下的就是吃了的那瓶)。

还有可能发生什么情况?(天平不平衡)。

那又说明什么情况?(升高的这2瓶中肯定有吃过了的)。

可是到底是哪一瓶呢?再怎么办?(升高的这2瓶在称一次)。

好,升高的这2瓶在称一次,这时,天平左边几瓶?(1瓶)。右边几瓶?(1瓶)。升高的这一瓶就是吃过的了。好,要从这5瓶口香糖中找出吃过的那一瓶,至少要称几次就一定能找出来?(2次)。

3、寻求不同的称法。

其他小组有别的称法吗?(生说师板演:5(1.1.1.1.1))

师小结:这种方法至少要称几次就一定能找出来吃过的那一瓶?(2次)。看来要利用天平找次品,方法还真是多种多样的。我们可以用学具帮助我们思考,也可以像老师这样画图的方法进行分析。

[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品” 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。]

三、探索最优策略。

1、从9个物品中找次品。

师:在接下来的问题中这两种方法大家都可以使用。下面的问题就更难啦。

出示课件2:在9个零件里有 1 个是次品(次品重一些),你能用天平把次品找出来吗?

现在拿出我们的学具:9个圆片当到做零件摆一摆,边摆边思考这几个问题:

(1)把物品分成几份?每份是多少?

(2)假如天平平衡,次品在哪里?

(3)假如天平不平衡,次品在哪里?

(4)至少称几次,能保证找出次品来?

2、学生自主探索。

师巡视:老师在巡视时发现有很多同学都能把次品找出来,而且他们的法都不一样,小组可以互相交流一下,看看你的方法和别人一样不一样。

生交流。

师:经过大家的交流,我们会发现自己能够想到一种,还能从同学那儿听到不一样的方法,说明你非常善于学习。接下来,把你的好方法跟全班同学分享一下。

3、学生汇报称法。

生叙述:把9个零件分成3组:4,4,1。先在天平两边各放4个,如果平衡,那单独的一个就是次品;如果天平不平衡,重的那一边的4个再份成2份,每份2个,再称,一定会不平衡,重的那一边2个再份成2份,每份1个,再称,沉下去的就是次品。师板书:9(4,4,1)

师质疑:把9个零件分成3组,分别是4,4,1。至少再称几次,就一定能找出次品来?(3次)还有不一样的方法吗?

生:9(1,1,1,1,1,1,1,1,1)

师:还有不一样的方法吗?

生:9(3,3,,3)

生:9(2,2,2,2,1)

师小结:好,看黑板上一共有几种不一样的分法?(4种)。9呢,有很多种分法,不同的分法可能导致最终称的次数不同。

[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务.让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

4、对比称法,找出规律。

师:我们观察哪种分法称的次数最少?是怎么分的?平均分成了3份,只需要称两次,就一定可以找到次品。那我们猜想是不是在其他的所有的找次品问题中,只要把物体平均分成3份,称的次数就最少?(不一定)。为什么呢?

5、学生思考后汇报猜想。

6、验证猜想。

师:要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

学生汇报:3次。

师:我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 ,2 ,8),(3 ,3 ,6),(5 ,5 ,2)(6 ,6,3)……

学生选择一种分法在纸上进行分析。

全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

四、与学生一起小结。

师:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。(板书:待测物品分三份,能均分的要均分)。

师质疑:如果待测物体的个数不能平均分呢?比如:10个,11个……

[设计意图:设计待测物品数量由3个到5个再增加到9个,10个,11个……,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法,也为下节课教学埋下伏笔]

五、巩固应用、内化提高。

1、完成P136练习二十六的第1题。

学生独立完成后找几名学生分析:因总数为9筐,故可平均分成3份,只称2次就能把吃过后那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证3次就一定能称出来,所以该方法不是最优的。

2、完成P136练习二十六的第2题。

有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?独立思考后在纸上进行分析。

全班汇报。教师指导学生在汇报时重点阐述:均分成几份?每份是多少?至少需要几次就可以找出这盒饼干?

师对练习做一个小结:在解决找次品问题的时候,我们把待测物品分成3份,并且平均分的方法能够准确快捷地找出次品。

六、回顾整理,反思提升。

师:这节课我们研究了什么问题?怎样找方法最好?通过实验、操作和观察,你发现 “找次品”的最优方法了吗?

篇3:找次品课件优秀教案

找次品课件优秀教案

找次品课件优秀教案

主题:找次品

课时:一课时

授课对象:五年级 课程标准中的相关陈述:

在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。 学情分析:

学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课中涉及到的 “可能”、“一定”、“可能性的大小”等知识点学生在此之前都已学过的。小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

学习目标:

1、能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

2、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的`方法解决问题的有效性。

3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决

实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

学习重点:

寻找用天平找次品的“最优化”方案。

学习难点:

知识的拓展及用最优方法解决生活中的问题。

教、学具准备:

卡片、多媒体课件

教学过程:

一、创设情景,生成问题

(播放视频)你从中了解到了什么信息?猜猜看,有可能是什么原因造成的。

二、自主探索、合作交流

1、教学例1

师:(出示天平)同学们,老师给大家带来了一个老朋友,他是?(天平)记得吗?我们在学习方程的时候就已经认识他了。他在今天我们的学习中起到了重要的作用。

(1)初步认识天平

(2)学习例1

师:大家平时愿意帮助别人吗?老师遇到一个问题,你们愿意帮忙吗?

2.师:有个小朋友身体缺钙,买了3瓶钙片,(出示三个钙片)其中有

1瓶吃掉了几粒,这瓶比其他的要怎么样?(轻一些)这个小朋友不注意将这瓶药和另外两瓶混在了一起。怎样才能帮我把这个次品找出来?。

学生介绍各种方法。(可以数数,用手掂一掂,用天平称)

3.师:大家帮忙找到了这么多方法解决问题,你认为哪种方法好,为什么?

(1)学生利用学具自主探索:现在有3瓶钙片,其中有一瓶比较少,我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?

(2)独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。

(3)师质疑:不进行实际称,你能利用天平的平衡原理表示出找次品的过程吗?

在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。

(4)小结:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)

篇4:《找次品》数学教学反思

新课程数学五下教材在数学广角中安排了“找次品”这一内容的教学,其目的是通过“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。基于以上认识在进行“找次品”这一内容的教学时,对教材进行了处理,以求更好的促进学生的思维发展。

精选研究数量,逐步优化找次品的方法

教学过程中我放弃的了教材中以3个物品、5个物品再到9个物品的研究顺序,将其改为3个物品、4个物品、8个物品、9个物品进而扩展到10个、27个物品中找次品的研究。操作过程简述如下:

1.探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。并在教师的指点下完成数字化的分析方法:

平衡1次3(1、1、1)

不平衡1次

2.利用不同的分法探究出4个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在学生面前,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。

3.以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,几关注解题策略的多样化,又为方法的优化提供可做分析的蓝本。(其中部分方法不做全面展示)

9(4、4、1)4(1、1、2)2(1、1)3次

9(3、3、3)3(1、1、1)2次

9(2、2、5)5(2、2、1)2(1、13次

9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次

而后教师重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。

猜想验证,探究规律

回顾前面找次品的研究,让学生发现在3个物品中找只要1次,4个物品中找只要2次,8个、9个物品中找也只要2次。并猜想5个、6个、7个物品中找的话,要用几次才可以了?并进行分析验证,得出在4个到9个物品中找一个次品只要用天平称2次的结论。随后让学生研究10个和27个物品中找一个次品的次数,既做为前面所学知识的巩固练习,又让学生进一步探究找次品的规律,得出相应的结论。

《找次品》数学教学反思

这节课,我连试教合在一起,一共上了3次,但是每一节的教学任务都没有,这到底是什么原因呢?针对各位老师对我的评课意见和自己的想法,对这节《找次品》进行如下的教学反思:

这节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题的策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。

在课前谈话环节,我用分过的一瓶七彩糖和没分过的七彩糖进行对比,从而引出“次品”这一概念,让学生从这两瓶中找出次品,根据学生的回答,引出用天平称。这一环节,我感觉上还好。

但是在学生示范了从3个物品中,只要称1次就可以找出次品这个环节后,我不应该重复学生的示范过程,而是应该呼应此环节的开始部分,让学生思考从2个物品中只要称一次就可以找出1个次品,为什么从3个物品中也只要称一次?这个道理不应该由我来说,而是应该让学生自己想明白找次品的基本原理。

接下来的从4个物品中找1个次品环节,此环节的教学目标是让学生能够用数学的方式来表示找次品的教学过程。我采用学生边说找次品的过程,我随机板书。由于多媒体的黑板离学生比较远,而这节课要板书的内容比较多,所以我写的字相对很小,这些种种原因,大多数学生对我在黑板上写的数学方式,并不是十分理解,虽然对着黑板又引导学生把找次品的过程又说了一次,但亡羊补牢的效果已经不明显了。在学生说方法时,我不应该随机板书,而应该跟学生点明,由于随着物品数目的增多,找次品的过程就更加地繁琐,所以要采用一种新的表现方式,从而引出用数学方式来表示找的过程,边回想刚才学生找次品的方法,教师边随机板书,也边介绍怎么样用数学方式来表现。

由于用数学方式来表示找次品的过程这一环节落实地很不到位,导致下面的环节的瘫痪,所以学生从8或9个物品找出次品,在小组内探索花的时间很多,集体反馈时花的时间也很多,但学生都只是还停留在口头表达层次上,并不能用数学的方式很好地表达出来。

一堂课要想上得成功,必须环环相扣,每一个教学环节都必须落实到位。这三次的上课,也让我深刻地体会到,作为一个老师,是整节课的引领人物,教学节奏的把握尤其重要,这是我今后教学应该尤其要注意的,高段教学的节奏该怎样把握呢?以后要多听听高段老师的课,多学习他们教学时节奏地把握,哪里该讲,哪里不该讲。

篇5:小学数学说课稿《找次品》

一、说教材

《找次品》是人教版小学五年级下册第八单元的内容。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性。在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。新课程标准中指出:培养学生良好的数学思维能力是数学教育教学要达到的重要目标之一,因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的实例呈现出来。

二、说学情

对于学生已经不是第一次研究解决问题的策略。“找次品”的学习对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,充分利用学生已有的逻辑推理能力和综合运用所学知识等解决问题的能力。另外,本节课会涉及到“可能”、“一定”、可能性的大小等知识点学生在此之前已学过。本节课学生的探究活动主要在于天平的使用。在使用的过程中,小组合作交流探讨、探究能够很好地完成教学任务。

三、教学目标

依据前面对教材的分析和对学情的把握,我确定了以下三维教学目标:

【知识与技能】

初步认识“找次品”这类问题的基本解决手段和方法,并能解决实际问题。

【过程与方法】

通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,提高应用意识和解决实际问题的能力。

【情感、态度与价值观】

感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

四、教学重难点

【重点】

归纳解决问题的最优策略,体会解决问题策略的多样性。

【难点】

运用最优的方法来解决生活中的实际问题。

五、说教法和学法

为了实现教学目标,有效地突出重点,突破难点,在教学过程中主要采用:小组讨论法。学生积极地参与讨论、合作交流,各抒己见。这样既能启迪思维,又增加了合作的意识,便于形成平等、宽松、民主的学习氛围,促进学生的参与。同时让学生动手、动脑去探索发现,并解决问题,真正体现以学生为主体的教学理念。同时在特定的情境中进行学习能激发学生学习兴趣,激发学生思维,转变学生的学习方式,变要我学为我要学。为了解决问题,学生会主动探索、观察,发现生活中的平移现象。这样安排有利于数学与生活的密切联系,使学生感受到数学的价值,增强学生应用数学的意识。

六、说教学过程

(一)导入新课

首先是导入环节,我会设置如下情境来导入:“1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。可见不合格零件的危害有多大”来自然而然地引出课题。

设计意图:这样设计不但可以活跃课堂气氛,融洽师生关系,还可以让学生认识到次品所带来的危害,为新课的讲授做好铺垫。

(二)生成原理

接下来出示教材例题:有3瓶钙片,其中1瓶少了3片。你能设法把它找出来吗?鼓励学生用自己喜欢的方式来找出来。教师积极评价各种方案,例如:打开瓶子数一数、用手掂一掂、用天平秤等,并鼓励学生说说如何使用天平找到次品,陈述理由想办法把用天平找次品的过程清楚地表示出来,鼓励学生尝试用图形来表示找次品的过程。

为了进一步学会天平的使用和用图形来表示找次品的过程,出示接下来的例题:9个零件里有1个是次品(次品重一些),假如用天平称,至少称几次就保证一定能找到次品?初接触这个题目,学生理解会有一定难度。我会要求学生:默读题目,找出关键词解释一下。特别是对“至少称几次就能保证一定能找到次品”关键句进行强调,加深理解。在整个探究的过程中,我会让学生分组探究,选择自己喜欢的方式来探究找出次品的次数,并将小组结果绘制在表格中。在此过程中,我会积极地指导学生,通过归纳、推理的方法体会运用优化策略解决问题的有效性。

设计意图:我认为数学课堂要善于利用学生生活经历为素材,将生活中的实际问题提升为数学高度,充分利用学生的知识经验基础、认知特点进行设计,组织学习。同时设置循序渐进地提问来引导学生主动探究,真正体会解决问题策略的多样性及运用优化的方法解决问题的有效性,培养学生的应用意识和解决实际问题的能力。

(三)深化原理

下面我会就上面的例题提出疑问,让学生思考:怎样才能保证找出次品需要称的次数最少,继而由师生共同总结得出找次品的最优策略。

设计意图:通过提问的方式来引发学生思考,继而由师生总结得出本节课的'核心内容。

这一环节教师充分指导学生完成任务,将学习的主动权完全还给学生,让学生真正成为学习的主人。

(四)应用原理

在这一部分我会要求学生用前面所得到的规律来探究变式练习:找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的。

设计意图:通过此道练习题让学生真正掌握找次品的最优策略,强化对探究过程的理解。

而且整个过程都是在学生自主探究中完成,可以使每个学生的学生更具活力,也有利于让学生感受到数学的成就感。

(五)小结作业

回顾这节课的学习过程,请多个同学谈谈这节课学到的知识,并提问:还有什么疑问?并做一做课后作业。

设计意图:小学的课堂应着重让学生体会知识的获得过程,并能真正学会将所学的知识应用到实际生活,能发现生活中的数学问题。

篇6:小学数学说课稿《找次品》

一、教材分析

《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

“找次品”的教学,共两课时,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课是第一课时,以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

二、学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 “可能”、“一定”、可能性的大小、等知识点学生在此之前都已学过的。

本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

三、教学目标

知识技能目标:让学生初步认识“找次品”这类问题的基本解决手段和方法。

过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及初步渗透优化思想。

情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

四、教学方法

1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

五、教学过程

(一)课前互动

在这一环节中,我设计了与学生比赛撕纸的游戏,看谁沿折痕撕的最好,撕的次数最少,然后根据学生撕的情况,指出撕的好的就是正品,不好的就是次品,这里的次品我们一眼就能看出来,而在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就一起来研究如何利用天平“找次品”。 板书课题:找次品(设计意图:本环节中,我主要想通过与学生的互动,消除学生对我的陌生感,同时,根据学生撕纸的好坏,能很好地引入课题,而撕好的纸片又是一个很好的学具,为下面的学习做好了准备。)

(二)提问

1、出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了2颗,你能帮我找出是哪一瓶少装了吗?用什么方法?

学生自由发言。

在同学们说的这些方法中,你认为哪一种方法最好?为什么?

[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平“称”的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

出示天平,介绍原理。

让学生说说怎样利用天平找出这瓶钙片呢?

学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

2、接着出示4瓶口香糖,让学生接着探究找次品的方法。在和同桌说一说,

指名生说: ①、4(2,2)、2(1,1) 2次

②、4(1,1,2)、2(1,1) 2次

③、4(1,1,1,1,) 2次

师:观察方法②和③,可以看出它们其实是同一种方法,而且分的份数③比②多,所以我们只写一种。在这强调,可以避免学生在下面的寻找中避免这种方法,

师:同学们,老师想的和你们一样,不信就看看,

看课件示意图,说一说和你说的那种方法一样?能否判断次品在哪个盘里?为什么?

说一说哪种方法有可能一次把次品找出来?

(让学生初步有最优方案的意识 )

(三)“找次品”的解决方法

1、同桌为一组合作:从5瓶口香糖中找出少装了的那瓶次品。

(合作要求:,用5个纸片当做5瓶口香糖,在课桌上摆一摆,然后说一说你们是怎样称的?称了几次?其中一人负责作好记录。)

2、指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

平衡:1 1次

5(2,2,1)

不平衡:2(1,1) 2次

在说第二种方法时,指名学生在黑板上板书过程,让学生能初步掌握这种记录方法,为下面学生独立进行记录做好铺垫,并提问学生:在用第一种称法称第一次时,你最希望看到什么情况?为什么?那么为什么还要称第二次呢?

从这儿我们可以看出,用天平找次品的方法是多种多样的。

[设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生纸片在课桌上模拟天平进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,并让学生试着书写第二种方法步便于学生理解每项数据、每种符号的含义,为后面的书写打下一定的基础。]

观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品” 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

(四)拓展提高

在这一环节,我让学生去探究6瓶、7瓶、8瓶口香糖中,寻找次品的方法,首先是巩固学生对数字代表称的过程的理解,能更好的进行应用,同时利用简单的数字,让学生能很好的寻找找次品的方法,为下节课探究优化策略打下基础,

(五)总结。

在这个环节,我只是让学生说一说找次品的方法是多样的,在找次品时,有可能第一次就找到,也有可能最后找到,所以我们要充分考虑最不利的情况,就是最后一次找到,那我们要用最好的方法、最少的次数找到次品。并对学生提出了让学生探究9、10、11或更大的数中寻找次品的方法,为下节课做好铺垫。

板书设计:

在板书上,我只是板书了3、4、5的找次品的方案,重点让学生明白每种方法的具体过程。

篇7:找次品小学数学说课稿

找次品小学数学说课稿

一、教材分析

《找次品》是人教版数学五年级下册第七单元数学广角的内容。实际生活生产中的“次品”有很多种差别的环境,有的是表面与及格品差别,有的是所用质料不切合标准等。这节课的学习中要找的次品是表面与及格品完全雷同,只是质量有所差别,且事先已经知道次品等到格品轻(或重),别的在全部待测物品中只有唯一的一个次品。

新课程标准中指出:培养学生精良的数学思想本领是数学讲授要到达的紧张目标之一。因而新课标课本体系而有步调地渗透排泄数学思想要领,实验把紧张的数学思想要领通过学生可以明白的简朴情势,接纳生动风趣的事例出现出来。通过讲授使学生受到数学思想要领的熏陶,形成探索数学题目标兴趣与欲望,渐渐生长数学思想本领。

“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

二、学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 “可能”、“一定”、可能性的大小等知识点学生在此之前都已学过的。

本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

三、教学目标

知识技能目标:让学生初步认识“找次品”这类问题的基本解决手段和方法。

过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

四、教学方法

1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

2.重视培养学生的'猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

五、教学过程

(一)情境导入

课前谈话:

师:同学们,我国的国球是什么球?

生:乒乓球。

师:第29届奥运会今年8月份将在我国举行,如果有次品的乒乓球流人赛场,将会产生什么后果?

生:

师:可见质量检查是多么的重要,今天我们就当小小质检员,用我们的智慧找出不合格的产品。

[设计意图:活跃课堂气氛,融洽师生关系,为新课的导入作好铺垫。]

(二)探究解决方案

1.3个球

出示3个乒乓球,说明:在这3个乒乓球中有一个次品球,它跟其他球相比外表一样,但轻些,你能帮我找出是哪一个吗?

学生自由发言。

师:在同学们说的这些方法中,你认为哪一种方法最好?为什么?

[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平“称”的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

出示天平。说说怎样利用天平找出这次品球呢?

学生回答后小结:可以把其中的2个分别放在天平的两个托盘中,如果天平平衡则没放上去的那一个轻些;如果天平不平衡则翘起一端的托盘中所放的那一个轻些。

揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就一起来研究如何利用天平“找次品”。板书课题:找次品

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

2.5个球

(1)独立思考:从5球中找出那个是次品。

(2)小组合作:

(合作要求:用手模拟天平,用5个学具当乒乓球。你们是怎样称的?称了几次?组长负责作好记录。)

(3)指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

平衡:11次

5(2,2,1)

不平衡:2(1,1)2次

5(1,1,1,1,1)1次或2次

……

师:从这儿我们可以看出,用天平找次品的方法是多种多样的。

[设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

师:观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品”的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

(三)探索最优策略

1.9个

师:在9个乒乓球中有一个次品(次品轻一些),用天平称,至少称几次就一定能找到这个次品呢?

(1)小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学分析填表。)

乒乓球个数

怎么分

分的过程

保证找出的最少次数

[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

(2)指名汇报,根据学生的回答填表并板书:

平衡3(1,1,1)

9(3,3,3)

不平衡3(1,1,1)2次

平衡1

9(4,4,1)平衡2(1,1)3次

不平衡4(1,1,2)

不平衡1

平衡1

平衡(2,2,1)

9(2,2,2,2,1)不平衡2(1,1)3次

不平衡2(1,1)

9(1,1,1,1,1,1,1,1,1)4次

……

引导观察:用哪一种方法保证能找出次品需要称的次数最少?

小结:平均分成3份去称,保证能找出次品所需的次数最少。

[设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

不能平均分成3份的应该怎样分呢?

2.10和11个

(1)全班合作:用图示法从10个和11个乒乓球中找出一个次品。

(合作要求:将全班所有的小组分成2部分,一部分小组分析“从10个乒乓球中找出一个次品”,另一部分小组分析“从11个乒乓球中找出一个次品”。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

(2)指名汇报,投影展示学生的分析过程。

(3)引导观察,感知规律

(利用填写好的表格,进行观察分析,投影出示)

一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

[设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时“组内不重复”,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

(4)你知道这是为什么吗?你能不能对这个规律作出解释?

[设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了“找次品”的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

(四)拓展提高

猜测:这种方法在待测物品的数量更大时是否也成立呢?

1.假定你有81个玻璃球,其中有一个球比其它的球稍重,如果只能利用没有砝码的天平断定哪一个球重,请问你最少要称多少次,才能保证找到较重的这个球?

2.有瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

[设计意图:本节课中提供的归纳要领在素质上是一种不完全归纳法,对数目更大时的情况是否实用,还必要通过试验来查验。先让学生举行预测,引发学生进一步举行归纳、推理等数学思索运动,再将“做一做”举行得当的改编,计划成较为开放的题目,既能满意差别条理学生的需求,又可以用更多的数据对总结的纪律举行验证。要是讲堂时间不容许,这一关键也可以作为讲堂的延伸让学生课后完成。]

篇8:《找次品》数学教学反思

《找次品》数学教学反思

本单元以找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。同时,进一步理解随机事件,感受解决问题策略的多样性和优化思想,培养学生的观察、分析、逻辑推理能力,并学习如何用直观的方式清晰、简洁、有条理地表示逻辑推理过程。

成功之处:

1.重视感受解决问题的多样性和优化思想。在例题的教学中,首先通过动脑思考怎样从3瓶钙片才能找出次品,并能用简单的过程清楚地描述出来。然后再从8个零件中找出次品,并让学生思考至少称几次能保证找出次品,在这一过程中,学生独立探索,并将自己探索的情况填入课本中的`表格里。探索情况如下:

8(1,1,1,1,1,1,1,1)分成8份至少称4次

8(4,4)分成2份至少称3次

8(2,2,2,2)分成4份至少称3次

8(3,3,2)分成3份至少称2次

通过观察学生发现当平均分成3份时,称的次数最少,这3份应使多的一份与少的一份相差1。根据这一规律再让学生找出9、10、11个零件中的一个次品,至少称几次才能保证找出次品,并感受到把待测物品要尽可能的均分成3份,进一步明确找次品的最优方法,从而体会到优化思想的重要性。

2.理解题目中的关键词。找次品中的“至少称几次能保证找出次品”是什么意思,先让学生理解关键词的意义,然后教师明确“能保证”就是在运气最差的情况下也能找到才叫保证,而“至少”就是指在所有各种方法中,称量次数最少的那种方案。

不足之处:

1.在探索多种方法的过程中,用时较多,导致时间分配不均匀,练习时间少。

2.对于运气好的情况明确的不是很清楚,可以直接告诉学生待测物品无论是多少个,称一次是有可能称出来的。

3.对于不知道次品是轻或重,还需要再称一次才能得出答案也没有明确。

再教设计:

可以改用分组探索,每组探索一种,集体交流时共同总结归纳找次品的最优方案。

篇9:小学数学《找次品》说课稿

一、说教材

在现实生活和生产中的“次品”有许多种不同的情况,例如有的是外观与合格品不同,还有的是所用材料不符合标准等。这节课要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),并且在所有待测物品中只有唯一的一个次品。“找次品”的教学,目的在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测,、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳,推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

根据《课标》的要求及教材的编排意图和本课特点,结合学生的知识基础和年龄特点,我从以下三方面制定了教学目标:

知识目标:让学生初步认识 “找次品”这类问题的基本解决手段和方法

能力目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,培养学生的应用意识和解决实际问题的能力。

情感目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生热爱数学的情感。

教学重、难点:

体会解决问题策略的多样性,初步学会运用最优的方法解决实际问题。

教具、学具准备:多媒体课件一套 天平待测物品(乒乓球 羽毛球等)

二、说教法、学法

由于本节课的内容活动性和操作性比较强,在教学中主要采用创设情境、引导发现、总结归纳等教学方法,给学生留下大量的动手操作、自主探索、相互合作的时间和空间。让学生充分地操作、试验、讨论、研究,找到解决问题的多种策略,引导学生从纷繁复杂的方法中,发现解决问题的最优策略。使学生能逐步脱离具体的实物操作,采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

关于解决问题的最优策略研究学生已经接触过,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一类,在这几节课的学习中,对简单的优化思想方法,通过画图的方式发现事物隐含的规律等也都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的“可能”、“一定”等统计与概率的知识,学生也有一定的知识基础。

四、说教学过程

㈠创设情境 引出课题

上课开始,先用多媒体展示我国将要在北京举行的奥运会的图片,如火炬传递、鸟巢体育馆等,从而谈话引出同学们最喜爱的比赛项目之一——乒乓球。在这些大型的比赛中,对乒乓球的质量要求是非常高的,若出现次品就会影响运动员的水平发挥,这节课我们就来学习有关找次品的问题。板书课题:找次品。

(这一环节的设计,我利用今年在北京举办奥运会这一事件引出课题,不但培养学生热爱数学的兴趣,更激发学生的爱国热情和民族自豪感。)

㈡初步感知 寻求方法

1.教师拿出事先准备好的5个乒乓球,说明:在这5个乒乓球中有一个比较轻的,请你帮忙把这个次品找出来?

这个问题一抛出,学生可能想到多种方法。比如:用手掂一掂、用称一个一个的称出质量、用天平称等。这时,教师引导学生:在同学们说的这些方法中,你认为哪一种方法最好?为什么?

(在这个环节中,主要是引导学生从多种找次品的方法中,发现用天平称的方法最好,因为我们的目的是要找出次品,并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。)

2.教师简单介绍天平原理。并拿出事先准备好的天平和乒乓球,分组进行活动。然后汇报活动情况。

这里学生找次品的方案可能有多种:有的会把5个乒乓球分成三份,5(2,2,1),先在天平的两端各放2个,如果平衡,那剩下的一个就是次品,若不平衡就把轻的一组再分成两份,轻的一个就是次品;还有的可能会把5个乒乓球分成五份,5(1,1,1,1,1),先在天平的两端各放一个,如果不平衡,那轻的一端就是次品,若是平衡,就在天平两端再各放一个,若是还平衡,剩下的一个就是次品,若是不平衡,轻的一个就是次品。这里教师的引导作用显得非常关键,比如可以提出类似的问题:不管你把5个乒乓球分成几份来称,每次最多称出几份?(两份)你几次能称出次品呢?(这时学生可能会说,有时1次,有时2次)那么我们至少需要几次就能保证称出次品?

(这个环节的主要目的是学生通过自己动手去称一称,找到解决问题的最佳方案。可是由于学生年龄特征和思维特点,往往只考虑到事情偶然性的方面,教师在这里适时引导,用简短的几句话,层层推进,步步深入,这样的设计不但帮助学生寻求到解决问题的最佳方案,而且培养了学生谨慎、严密的思维习惯。)

㈢合作探究 寻找规律

1.出示题目:一盒羽毛球有9个,里面有一个较轻的,至少称几次就一定能找出次品来?

要求学生小组合作,用天平称,并把找次品的结果填到老师发的表格内。在这里学生分组的方法很多,比如可以把9个羽毛球分成9份,两个两个的称,至少需要4次;也可以分成5份,9(2,2,2,2,1),每次称4个,至少需要3次;平均分成3份,每次称6个,两次就能保证称出次品;如果不是平均分成3份9(4,4,1),至少需要3次等等。最后通过观察、比较、组内交流确定平均分成3份来称,这种方案是最优的。

(这个环节主要是让学生采取小组合作的形式,找出9个物品中的次品,因为物品的数量较多,分组的方法也多种多样,这样就给学生提供了充分的独立思考与合作学习的机会,学生在对比、观察、分析、交流的过程中找到最佳方案。)

2.让学生观察、分析表格中的有关数据,找出为什么平均分成3份这种方案是最优的。

(从几种方案中找到最优的,对五年级学生来说不是一件很难的事情。教师引导学生从自己动手操作得到的数据中发现规律,再根据规律解决问题,这是教学的关键所在。)

㈣运用规律 拓展提高

出示题目:如果有8个零件,其中一个质量较重,至少需要几次一定能找到次品?

让学生独立思考,然后汇报自己找寻方案的过程。

(这一环节的设计,要求学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡。它打破把待测零件平均分成3份的认知结构,故意制造矛盾,若是待测物品不能平均分成三份,怎么办?在教师的引导下,学生通过观察、比较,发现若不能平均分时,每份的个数应尽量接近。)

㈤总结交流 巩固延伸

学生交流本节课学过的知识。

最后教师提出:若是我们待测物品的个数很多,或者是没有天平,我们怎样很快找出次品呢?

(本环节的设计是对本课内容的总结,同时又为下节课的.学习做好了铺垫。)

篇10:小学数学《找次品》说课稿

一、说内容

《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

二、说教材

“找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受到数学的魅力。

仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的最优策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是最优方案”教材没有涉及,学生的疑惑是否会更多呢?

基于上述考虑,我把教学目标定位在:1.让学生初步认识“找次品”这类问题的基本解决手段和方法。2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。3.通过观察多个待测物品时,让学生体会到最优化策论的成因。

三、说教法

在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。

四、说设计

(一)课前游戏。课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。

(二)、情景导入,激发兴趣。

(设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)

(三)、自主探索用天平找次品的基本方法。(安排了3个层次)

首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)

紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔)最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。

(四)、尝试解决实际问题,寻找最优方法。

首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现最佳方法。教师引领学生如果是3的倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对最佳策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。

(五)、留与悬念,课余激发探索兴趣。

这里主要探索非3倍数的最佳策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是最优的方法

(六)、学习反思:

对全课进行输理,回顾找次品的方法和最佳策略。

五、说体会

教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于最佳策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!

篇11:《找次品》讲课稿

《找次品》讲课稿

尊敬的各位领导、老师:

大家上午好,我今天演课的课题是五年级下册数学广角《找次品》

上课,同学们好,请坐。

今天老师要带同学们挑战一个新的工作,那就是“小小质检员”。要想当一名合格的质检员,可不容易,因为你需要将产品中的次品找出来。同学们请看大屏幕,你觉得至少称多少次才能找到次品呢?我看到有些同学毫无头绪,那你就来猜一猜吧,猜想也是学习数学常用的方法。哎呀,同学们猜的都不一样,那到底谁猜的对呢?接下来的数学之旅会告诉你答案。(出示课题:找次品)

题目中的关键词有哪些?它的含义是什么呢?请反应最快的小张同学来说说。嗯,他理解的确实很准确,至少是最少的意思,保证是在最不利的情况下找到次品。积极思考的你值得大家的赞赏,掌声在哪里?

刚听到有的学生小声说:81个数太大了,不好找,怎么办呢?有同学说用3瓶先试试,看看有没有什么规律?真棒,他已经学会用“化繁为简”的数学思想了。

那就请同学们从3瓶开始吧,请看大屏幕。

看到大家积极的想办法,热烈的讨论,我觉得我今天可以暂时休息了,课堂的小主人们,舞台上有请。

“老师,我觉得可以用天平称,把天平的左右各放一瓶,如果天平不平衡,说明次品在翘起来的那一边,如果天平平衡,说明次品就是另外放的一瓶。所以,三瓶木糖醇一次就能找到次品。”

同学们把掌声送给他,遇见问题,积极动脑提出解决问题的方案,这是作为新时代少年必备的能力,而且思路清晰、条理清楚,老师为你感到骄傲。咱们来看他用我们之前学过的天平解决这个问题,用上了如果…就…来描述

你们能把刚才用天平找次品的过程,用自己喜欢的方式清楚地表示出来吗?

老师我觉得可以这样表示:用小正方形代替木糖醇,上面写上1、2、3。如果1和2平衡,3是次品。如果不平衡。轻的是次品。

非常棒,不但找出了次品,而且成功地记录了下来。你们离成为合格的质检员不远啦。当然,也可以像老师这样记录。

如果老师把3瓶木糖醇换成八个零件,你能找到次品吗?怎样才能怎样利用天平把这个重的`零件找出来呢?请同学们小组合作讨论一下,要求请看大屏幕:

根据大家小组的汇报交流可以得出结论:把8个零件分成(3,3,2),至少称两次保证找出次品。

如果是9个零件,应该怎么样找出次品呢?最少称几次?是的,小王同学给出了最佳解决方案,即把9分成(3,3,3),至少两次找到次品。

老师我有问题,为什么我和小王都分成3份,他称的次数是2,我称的是三次呢?

有时候提出问题比解决问题更重要。对啊,为什么呢?谁能帮帮他?

老师,我知道,虽然都是分三组,小王是平均分的,无论第一次称平衡还是不平衡,3都只需要再称1次,小明分的是(4,4,1),4要分成2和2,2还要在分成1和1,3次才能找到次品。解释的清楚明白。掌声送给他。

通过刚才的学习,同学们有什么发现?

各位课堂上的小主人,舞台上再次有请。

“我们组发现了要想最快的找到次品,需要把物品分成三份,要尽量的平均分,如果不能平均分,那也应该让多的和少的数只差1,这样不但能保证找到次品,而且称的次数一定最少。”

你们小组总结的真好,把找次品的最优方案说出来了,真厉害!老师准备的建议用不着喽,不过老师更开心,因为你们青出于蓝而胜于蓝啦,那老师把一则三字诀作为礼物送给你们,我们一起来读读吧!

大家通过下面考验就可以领到上岗证啦!请看大屏幕

哇塞,你们都成功找到啦!恭喜同学们都成为了合格的质检员,现在老师要把象征荣誉的工作证发给你们,希望你们在接下来的工作中佳绩不断。好,同学们,下课,下次再会!

篇12:找次品说课稿

一、说教材

在现实生活和生产中的“次品”有许多种不同的情况,例如有的是外观与合格品不同,还有的是所用材料不符合标准等。这节课要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),并且在所有待测物品中只有唯一的一个次品。“找次品”的教学,目的在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测,、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳,推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

根据《课标》的要求及教材的编排意图和本课特点,结合学生的知识基础和年龄特点,我从以下三方面制定了教学目标:

知识目标:让学生初步认识 “找次品”这类问题的基本解决手段和方法

能力目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,培养学生的应用意识和解决实际问题的能力。

情感目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生热爱数学的情感。

教学重、难点:

体会解决问题策略的多样性,初步学会运用最优的方法解决实际问题。

教具、学具准备:多媒体课件一套 天平待测物品(乒乓球 羽毛球等)

二、说教法、学法

由于本节课的内容活动性和操作性比较强,在教学中主要采用创设情境、引导发现、总结归纳等教学方法,给学生留下大量的动手操作、自主探索、相互合作的时间和空间。让学生充分地操作、试验、讨论、研究,找到解决问题的多种策略,引导学生从纷繁复杂的方法中,发现解决问题的最优策略。使学生能逐步脱离具体的实物操作,采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

关于解决问题的最优策略研究学生已经接触过,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一类,在这几节课的学习中,对简单的优化思想方法,通过画图的方式发现事物隐含的规律等也都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的“可能”、“一定”等统计与概率的知识,学生也有一定的知识基础。

四、说教学过程

㈠创设情境 引出课题

上课开始,先用多媒体展示我国将要在北京举行的奥运会的图片,如火炬传递、鸟巢体育馆等,从而谈话引出同学们最喜爱的比赛项目之一――乒乓球。在这些大型的比赛中,对乒乓球的质量要求是非常高的,若出现次品就会影响运动员的水平发挥,这节课我们就来学习有关找次品的问题。板书课题:找次品。

(这一环节的设计,我利用今年在北京举办奥运会这一事件引出课题,不但培养学生热爱数学的兴趣,更激发学生的爱国热情和民族自豪感。)

㈡初步感知 寻求方法

1.教师拿出事先准备好的5个乒乓球,说明:在这5个乒乓球中有一个比较轻的,请你帮忙把这个次品找出来?

这个问题一抛出,学生可能想到多种方法。比如:用手掂一掂、用称一个一个的称出质量、用天平称等。这时,教师引导学生:在同学们说的这些方法中,你认为哪一种方法最好?为什么?

(在这个环节中,主要是引导学生从多种找次品的方法中,发现用天平称的方法最好,因为我们的目的是要找出次品,并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。)

2.教师简单介绍天平原理。并拿出事先准备好的天平和乒乓球,分组进行活动。然后汇报活动情况。

这里学生找次品的方案可能有多种:有的会把5个乒乓球分成三份,5(2,2,1),先在天平的两端各放2个,如果平衡,那剩下的一个就是次品,若不平衡就把轻的一组再分成两份,轻的一个就是次品;还有的可能会把5个乒乓球分成五份,5(1,1,1,1,1),先在天平的两端各放一个,如果不平衡,那轻的一端就是次品,若是平衡,就在天平两端再各放一个,若是还平衡,剩下的一个就是次品,若是不平衡,轻的一个就是次品。这里教师的引导作用显得非常关键,比如可以提出类似的问题:不管你把5个乒乓球分成几份来称,每次最多称出几份?(两份)你几次能称出次品呢?(这时学生可能会说,有时1次,有时2次)那么我们至少需要几次就能保证称出次品?

(这个环节的主要目的是学生通过自己动手去称一称,找到解决问题的最佳方案。可是由于学生年龄特征和思维特点,往往只考虑到事情偶然性的方面,教师在这里适时引导,用简短的几句话,层层推进,步步深入,这样的设计不但帮助学生寻求到解决问题的最佳方案,而且培养了学生谨慎、严密的思维习惯。)

㈢合作探究 寻找规律

1.出示题目:一盒羽毛球有9个,里面有一个较轻的,至少称几次就一定能找出次品来?

要求学生小组合作,用天平称,并把找次品的结果填到老师发的表格内。在这里学生分组的方法很多,比如可以把9个羽毛球分成9份,两个两个的称,至少需要4次;也可以分成5份,9(2,2,2,2,1),每次称4个,至少需要3次;平均分成3份,每次称6个,两次就能保证称出次品;如果不是平均分成3份9(4,4,1),至少需要3次等等。最后通过观察、比较、组内交流确定平均分成3份来称,这种方案是最优的。

(这个环节主要是让学生采取小组合作的形式,找出9个物品中的次品,因为物品的数量较多,分组的方法也多种多样,这样就给学生提供了充分的独立思考与合作学习的机会,学生在对比、观察、分析、交流的过程中找到最佳方案。)

2.让学生观察、分析表格中的有关数据,找出为什么平均分成3份这种方案是最优的。

(从几种方案中找到最优的,对五年级学生来说不是一件很难的事情。教师引导学生从自己动手操作得到的数据中发现规律,再根据规律解决问题,这是教学的关键所在。)

《数学广角—找次品》教学反思

五年级数学下册《找次品》练习题

找次品教学设计

《找次品》教学反思

小学数学五年级下册《找次品》教案

五年级数学下册数学广角找次品教学设计

找次品优秀教学设计

人教版找次品获奖说课稿

人教版找次品优质课教学设计

找春天课件

找次品数学课件(共12篇)

欢迎下载DOC格式的找次品数学课件,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档