这里小编给大家分享一些混凝土搅拌运输车副梁失效形式和结构改进(共含9篇),方便大家学习。同时,但愿您也能像本文投稿人“YC”一样,积极向本站投稿分享好文章。
混凝土搅拌运输车副梁失效形式和结构改进
介绍了混凝土搅拌运输车副梁的.常见失效形式.通过对副梁进行受力分析,提出了传统副梁缺陷的成因,并详细介绍了各种规格混凝土搅拌运输车的副梁结构及改进方案.
作 者:李清华 安志光 吕明祥 作者单位:新乡市新飞专用汽车有限公司,河南新乡,453700 刊 名:专用汽车 英文刊名:SPECIAL PURPOSE VEHICLE 年,卷(期): “”(7) 分类号:U469.6+5.03 关键词:混凝土搅拌运输车 焊缝撕裂 疲劳断裂 副梁结构 U型螺栓卡混凝土搅拌运输车检查规定有哪些?
1 筒体与托轮接触应良好,不应跑偏、窜动和严重变形;
2 搅拌筒机架缓冲件不应有裂纹或损伤;搅拌筒内叶片、进料斗、主辅卸料槽不应严重磨损和变形;
3 搅拌筒、进料斗和主辅卸料槽不应有明显的混凝土积块,
1 取力器工作时,应结合平稳,压力应达到设计的额定要求,不应渗漏;
2 液压系统零部件应齐全完好,系统工作压力应符合说明书要求;
3 液压油型号、油质、油量及使用应符合有关规定;散热泵工作时油温不应超过
4 各液压操纵部分运动应灵活、连接可靠,
1 液压系统中应设有防止过载和液压冲击的安全装置;安全溢流阀的调整压力不得大于液压泵的额定压力;
2 混凝土搅拌运输车侧面、后部的防护装置应齐全、完好;
3 混凝土搅拌运输车应配备灭火器材。
我国混凝土运输业的现状和发展混凝土搅拌运输车专题之一
混凝土是现代基本建设中被最广泛采用的建筑材料,随着我国建筑业突飞猛进的发展,与混凝土使用相关的一些问题日益突出.一是对混凝土质量的'监控难以实施,这直接导致了建筑物质量多次出现问题,典型的如一些塌桥坏路事件,给国家和人民生命财产造成重大损失;二是建筑工地搅拌混凝土时,粉尘、噪声、污水对工地周围环境造成很大污染;三是建筑工地往往地域狭窄,建筑材料堆放场地十分紧张.为了解决这些问题,我国在借鉴发达国家经验的基础上,从20世纪80年代开始推广混凝土集中搅拌技术,并从90年代起通过行政命令全面实施建筑工程使用预拌混凝土的方案.
作 者:雷一澄 作者单位: 刊 名:商用汽车 英文刊名:COMMERCIAL VEHICLE 年,卷(期): “”(8) 分类号: 关键词:混凝土搅拌运输车调心托轮的有限元分析
为满足混凝土搅拌车托轮的使用要求,对原有托轮进行结构设计上的.改进,提出有效提高托轮使用性能的一种方案.并对改进后的调心托轮进行结构、强度、受力等方面的计算分析,得出其可靠性满足实际使用要求的结论.
作 者:王飞 WANG Fei 作者单位:三一重工股份有限公司泵送研究院,长沙,410100 刊 名:专用汽车 英文刊名:SPECIAL PURPOSE VEHICLE 年,卷(期): “”(1) 分类号:U469.6+5.02 关键词:混凝土搅拌运输车 调心托轮 结构,
预制梁的箍筋应全部伸入叠合层,且各肢伸入叠合层的直线段长度不宜小于10d,d为箍筋直径。预制梁的顶面应做成凹凸差不小于6mm的粗糙面。
2 叠合板的叠合层混凝土厚度不应小于40mm,混凝土强度等级不宜低于C25。预制板表面应做成凹凸差不小于4mm的粗糙面。承受较大荷载的叠合板以及预应力叠合板,宜在预制底板上设置伸入叠合层的构造钢筋。
预应力混凝土连续箱梁桥结构优化设计
结合有关工程实例,以预应力混凝土连续箱梁桥的上部结构造价为目标函数,以规范的构造、正截面强度和使用阶段的应力等要求为约束条件,主要以箱形梁截面的.梁高为设计变量.应用改进枚举法.分别得到两种不同截面、构造形式下的优化设计结果.并对这两种优化设计结果进行比较,最终得出优化设计方案,使得桥梁构造合理、造价最低.
作 者:胡志伟 HU Zhi-wei 作者单位:安徽省交通规划设计研究院,安徽,合肥,230031 刊 名:工程与建设 英文刊名:ENGINEERING AND CONSTRUCTION 年,卷(期): 23(2) 分类号:U448.35 UF448.215 U448.213 关键词:结构优化设计 预应力混凝土连续梁桥 箱梁浅谈沥青混凝土摊铺机自动找平梁的结构原理及运用
【摘要】本文通过对沥青混凝土摊铺机自动找平梁结构及原理分析,联系实践经验提出其运用技巧,为高等级公路路面施工中的平整度控制提供借鉴意义,也为国内有关机械厂家提供一个建议。 【关键词】摊铺机;找平梁;原理;分析;运用 平整度是评价高等级公路使用质量的一个重要参数,因此平整度控制也是路面施工控制中的一个重要环节。良好的平整度水平,来自于:基底和各结构层的稳定性,无突变的、不均匀的沉降;各结构层本身连续、均衡的压实度和平整度水平,较小的变异性;施工工艺中,基准面的设定,沥青混凝土的拌和、摊铺、碾压,以及接缝处理等,各个环节的精细操作。其中,如何在路面施工过程中,为摊铺机行走提供一个准确的平整度参照系,是达到良好的平整度水平的先决条件之一。 1. 规范要求及施工中规定 (1)根据《公路沥青路面施工技术规范》(JTJ032-94)规定,“用于铺筑高速公路和一级公路的沥青混凝土摊铺机应……:具有自动或者半自动方式调节摊铺厚度及找平的装置……”。“摊铺机自动找平时,中、下面层宜采用一侧钢丝绳引导的高程控制方式。表面层宜采用摊铺层前后保持相同高差的雪橇式摊铺厚度控制方式……”。沈大和京津塘等高速公路也正是按此程序控制的。 (2)美国沥青协会《路面铺装手册》中提出,如果下面层已经非常接近容许误差,走雪撬也可以提供出光滑的面层。在沪宁高速公路的路面施工实践中,通过详尽的调查分析和比较后,认为:在高等级公路施工中,及采用进口摊铺机械的情况下,摊最度较为容易控制;而高程误差经底基层、基层、下面层施工,已相对消除,对于中、上面层,平整度要求成为主要控制因素,高程要求相对次要;再之,一侧钢丝绳的引导对于灵敏度相对较高的进口摊铺机械来说,当然是不够的。 (3)因此建议各路面施工单位:一般情况下,对于全幅摊铺的摊铺机,只在基层上层和下面层摊铺时采用两侧钢丝绳引导控制方式,而中、上面层均可采用悬浮式基准梁的等厚度控制方式(即走雪撬)。这样的施工控制方法,不仅来源于实践,而且基于以下分析。 2. 原理分析 (1)采用钢丝绳引导的高程控制方式,按有关规定,应采用直径2~2.5mm的钢丝绳,200m为一段,立杆间距10m,张紧力需800~1000N。假设钢丝绳的张紧力无限大,测量设定的铁立杆上标高绝对准确,则由路线两侧钢丝绳提供的基准面将是上一面层的绝对标准面。但是,实际施工过程中,钢丝绳上所受的张紧力不可能无限大,而且因两侧路缘带上底基层、基层已硬化成型,承受张紧力的拉力支撑杆难以设置,规定800~1000N的张紧力也不能保证;再加上路面摊铺一天的工作量在1~2Km甚至更多,其每天两条钢丝绳的测设任务相当艰巨;另外摊铺机行走过程中引发的钢丝绳振动难以消除,人为的触、碰及破坏更是难以避免,甚至可能发生因摊铺机方向走偏,熨平板刮挤拉线桩的情况,使以钢丝绳引导的高程控制方式的准确性大打折扣。 (2)采用以雪撬式控制摊铺厚度的方式,是以下一面层为基准面,在摊铺机行走过程中,尽力减小其传递到上一面层的波动及突变误差,以达到上一面层良好的平整度的目的。其原理类似于杠杆,即将杠杆的`支点安置于受外界因素影响较小的新摊铺层上,而下一层次的许多不平整因素被梁体结构分解、缩小若干倍,使传感器得到一个相对稳定或波动幅度较小的控制信号。与上一方法比较,在下一层次的平整度良好的前提下,走雪撬的方法显然优于钢丝绳控制方法。 (3)国外产的摊铺机均配有自动找平梁这一配件,但是因其价格高(约人民币35万元左右,如美国BLOW KNOX公司的浮动找平装置,售价34万元),且原理简单,所以沪宁高速公路路面施工单位大都采用自己加工生产的自动找平梁。 3. 结构分析 3.1从其结构看,单片自动找平梁主要由四个部分组成:一是前着地部分(轮式或雪橇板),二是后着地部分(一般两组雪橇板),三是前后的联接横梁,四是牵引横架。前三个部分中各结点均采用可任意旋转的轴联接。 3.2一般前着地部分至少由4组轮子(或雪橇板)组成,其中一个轮子若遇到高程的突变,传递到A点的高程变化仅为1/8,再传递到B点(摊铺机传感仪设置处)只有1/16甚至更小,即若遇到一颗2cm的石子,传递到摊铺机的反应装置时只有1~1.2mm,这对于摊铺机的平整度反应装置来说已微乎其微。 3.3各路面施工单位自行加工生产找平梁的过程中,也遇到各种问题,后经协调组织、相互学习取经,均取得了满意的效益。归结起来有以下几个技术要点: (1)第一部分前着地部分的轮组运转灵活,轮径一般40~50cm为宜,不宜太小,否则其稳定性不足; (2)第二部分后着地部分的雪橇板宜大,一般60cm×35cm有利于分散其承受的重量,应当注意,雪橇板上的支点应略向后置,使其在行走过程中不致栽头,向引起新铺路面上的深沟滑痕; (3)第三部分前后联接的横梁长度一般10~12m,刚度要大,但其重量变适中,因摊铺机的传感仪触头与横梁为线接触,横梁挠度的振动将引起传感仪上得到上下波动的信息;而且因其重量由前后两个着地点承担,特别是后着地部分,若承担的份量过重,对已铺新路面的平整度不利; (4)第四部分牵引装置为一横架,其连接摊铺机侧壁和找平梁的前端主体,在摊铺机行车过程中与摊铺机形成一个整体,需要有良好的刚度,防止振动(摇荡)前进的情况发生; (5)就整体而言,整个自动找平梁的各结点及轮轴应摩擦力小,利于灵活运转;材料可选用轻质材料,若选用2~3mm厚的钢材加工成矩形截面梁体也可以,并且结构型式上参照桁架的设计方法,配以斜撑固定,加强其刚度,减少其中因自身振动引起的误差变化。 3.4根据以上原理分析,及各路面施工单位的实践,各施工单位自己加工生产了形式多样的自动找平梁,一般花费不到10万元人民币,其质量和使用效果却与国外产品相当,完全可以取代进口的配件,并且已在多条公路路面施工中取得了良好的效果。 4. 结束语 (1)当然,如前所述,下一层次(基准层面)良好的平整度是其前提,沪宁高速公路路面底基层采用路拌石灰土,基层采用厂拌二灰碎石,以摊铺机铺筑,层层严格要求,至油路面下面层时,其平整度水平已大大优于规范要求,因此及时采用走雪橇式控制方法,使平整度水平又上新台阶。到上面层铺筑完毕,有83%的路面里程平整度达到了 (2)通过以上论述,可以为其它高等级公路路面施工中的平整度控制提供借鉴意义,也可以为国内有关公路机械厂家提供一个建议。
型钢混凝土梁式转换层结构有哪几种型式?
(1)转换梁上满跨不开洞墙体见如下图a,上部墙体与转换梁共同作用;
(2)转换梁上满跨开窗洞墙体见如下图b,
(3)转换梁上开门洞墙体见如下图c;
(4)转换梁上不满跨,不开洞墙体见如下图d;
(5)转换梁上不满跨开窗洞墙体见如下图e;
(6)转换梁上不满跨开门洞墙体见如下图f;
(7)转换梁上托剪力墙小墙肢见如下图g:
(8)转换梁上托柱见如下图h,
转换层的结构型式
仿古塔高层混凝土结构梁板综合施工技术研究论文
随着时代的进步,现代建筑物、构筑物等的平面布置形式越来越多样化,建筑造型越来越新颖,逐步采用现代现浇钢筋混凝土结构来建造仿古建筑,而高层仿古塔的出现,给混凝土结构施工技术带来了新的挑战。仿古塔建筑往往设置有大跨度挑檐,其混凝土结构梁板采取特殊的构造形式,梁板造型复杂,施工难度大,为此,本文介绍此仿古塔高层混凝土结构梁板综合施工技术。
1 工程概况及难点分析
1.1工程概况
永定塔及周边群组工程是第九届中国国际园林博览会的标志性建筑,形式上为唐、宋、辽风格,总用地面积26 384 m2,总建筑面积19 275 m2,其中地上10 680 m2,地下8 595 m2,建筑占地面积3 872 m2,容积率0.40。永定塔地上9层,地下2层,另外在永定塔核心部位最下面设置地宫。环绕永定塔的配套建筑组群为地上1层建筑,塔院北侧设置两处消防通道,消防通道上方设门楼。永定塔总高度99.9 m,塔身高69.7 m(台明地面至第9层檐口),结构形式为现浇钢筋混凝土框架核心筒结构,首层层高12.57m} 2层层高8.16m, 3层层高7.77 m,各层随高度每层层高变低。平面为正八边形,核心筒外侧设有8根圆柱,柱外形成大跨度悬挑结构飞檐,最大悬挑长达8m,为支撑外部的大跨度挑檐,边柱与内核心筒之间沿竖向依次设有平托梁、翼角梁和平梁,三重梁两两交汇,组成三角衔架体系,以满足本楼层翼角梁大跨度悬挑的要求。另外,在正身斜梁与翼角梁之间的飞檐板为双曲面异型空间板,造型独特,无法采用普通的梁板混凝土施工技术进行施工。
1.2难点分析
1.2.1竖向交叉三重混凝土梁结构施工难度大
边柱与内核心筒之间沿竖向设置的平托梁、翼角梁和平梁,三重梁两两交汇,组成三角析架体系,以满足本楼层翼角梁大跨度悬挑的要求,如图2所示。设计柱混凝土强度等级为C40,梁板混凝土强度等级为C30,若按传统方法按照从下往上进行分层施工,此不同标高的三道混凝土梁需留置多道水平施工缝,结构整体性差,且施工缝的处理十分困难,施工进度慢,无法满足第九届园博会筹备处的整体要求。而采用平托梁、翼角梁和平梁组成的竖向交叉三重梁一次浇筑成型施工,不但混凝土结构整体性好,解决了施工缝处理的技术难题,而且施工进度能够显著提高,成本降低。但进行整体浇筑,由于三重梁相互交叉,节点钢筋密集,上下层梁模板如何进行整体支设,如何保证混凝土浇筑密实,是该工程所要面临解决的施工技术难题。
1.2.2双曲面异型空间板的结构施工难度大
永定塔各楼层正身斜梁与翼角梁间的飞檐板双方向均呈弧形,且弧形角度随楼层不断变化。给混凝土成型施工带来极大困难。双曲面空间板的施工重点为模板支设,最简单的办法是预先加工定型钢模板底模现场进行整体支设,但由于永定塔各楼层弧形板形状规格均有差异,若采用定型钢模板无法进行周转使用,一次投入量过大,成本过高,不利于节能环保。而采用多层板进行现场拼装,重点需要解决构件定位放线、模板加工及现场安装等施工技术难题。
2 重点施工技术
2.1竖向交叉三重梁钢筋施工技术
梁柱节点处、多重梁竖向交叉处钢筋密集,给梁主筋及柱箍筋的贯通带来困难,利用AutoCAD绘图软件的优点,对所有构件进行精确放样,确定各钢筋、模板的精确尺寸,放样时,充分考虑梁柱节点处的水平放射梁,竖向多重梁与柱及梁与梁交叉的位置关系,并绘制放样图。先按要求逐梁进行放样,放样完成后再进行整体对比,避免节点处钢筋交叉产生矛盾。翼角梁钢筋构造多样,应精确上下铁钢筋的弯钩角度、弯折部位及锚固长度等。尤其是翼角梁斜向构件端部的槽齿部位的箍筋绘制尺寸要准确。
根据放样结果发现的问题,采用优化主筋弯锚角度及方向、优化箍筋配置方式等方法解决钢筋相互交叉贯通问题,解决平梁与翼角梁、平托梁与翼角梁交叉部位箍筋交叉重叠的问题。
(1)原翼角梁箍筋与平托梁、平梁箍筋交叉,经与设计沟通,将翼角梁箍筋改为竖向布置,避免了平梁与翼角梁、平托梁与翼角梁交叉部位箍筋交叉重叠的问题。
(2)因梁从柱边悬挑较大,平托梁及翼角梁钢筋要求全部锚入内侧核心筒墙体内,而内侧梁上下铁钢筋为双排钢筋,翼角梁的上铁也为双排钢筋,造成内侧梁上铁层层叠加。钢筋放样下料时充分考虑钢筋叠加情况,翼角梁钢筋提前弯锚,达到钢筋锚固要求,并为钢筋绑扎提供条件。要求钢筋放样时在内侧平梁内设直螺纹接头,既保证钢筋抗拉强度,又能解决内侧梁因圆柱与核心筒墙体距离过近无操作面无法插入整根钢筋的问题。
2.2三重梁的模板整体支设技术
利用三重梁相互交叉形成的三角形洞口,设计加工三角形定型洞口模板,并与钢管支架共同组成稳定的'模板支撑体系。
三重梁最下一层平托梁底采用扣件式钢管脚手架搭设支撑排架。支撑立杆横向间距不大于300 mm,纵距不大于450 mm、步距不超过600 mm。平托梁与翼角梁间、翼角梁与平梁之间设三角定型模板,定型模板下设钢筋垫支撑三角定型模板。梁底架体支撑体系与周围楼板架体及主体结构进行牢固拉结,连为一体。
模板安装总体按照平托梁底模一翼角梁下三角定型模板一平梁下三角定型模板一侧模的顺序进行依次安装。梁底模次龙骨为5 0 mm X 100 mm方木支撑,布置间距不大于200 mm,与梁底模板钉成整体。梁底模板主龙骨间距450 mm,立杆顶部设U形托支顶100 mm X 100 mm方木。
模板安装前,在已浇混凝土墙、柱上弹出模板标高的水平控制线,按设计标高调整U形托丝杠伸出长度,然后安装梁底模。并拉线找直,梁底模要按跨度的2%起拱。侧模与底模之间采用侧模夹底模,楼板与梁侧模之间采用板模压梁模。顶板模板与梁侧模、梁侧模与梁底模及三角定型模之间接缝贴海绵条,防止漏浆。
2.3三重梁的混凝土浇筑技术
三重梁中间定型模板的下层模设排气孔,保证混凝土浇筑密实,并在最下层平托梁靠圆柱约200 mm处的定型模板上设200 mm X 200 mm的洞口,可观察圆柱内混凝土浇筑情况,并可插入混凝土振捣棒辅以振捣。伸入圆柱内侧的平托梁上口和上层平梁下口设串筒,可将混凝土从上层梁中流下。
三重梁以下的圆柱混凝土在三重梁模板施工前浇筑完毕,并将圆柱水平施工缝留置于平托梁下口处。三重梁及平托梁以上圆柱的混凝土浇筑顺序。
浇筑多重梁及柱的混凝土前,在柱每个角点不大于振捣棒作用半径的1.5倍范围内插一根48钢管,保证混凝土能顺利通过梁柱节点内的大密度钢筋,使混凝土振捣棒能通过缝隙对下部混凝土进行振捣。原柱混凝土强度等级为C40,梁板为C30,为方便施工,平梁和板混凝土强度仍为C30,平托梁和翼角梁混凝土强度由C30调整为C40,方便梁柱同时浇筑。
2.4异型双曲面空间板的主要施工技术
2.4.1异型空间板的三维放样
利用AutoCAD绘图软件对图纸中立体异型空间板构造的平面、立面进行放样。再利用AutoCAD绘图软件的3D功能,通过设计给定的外弧形的平面和立面曲线得到弧形板的三维立体图。
在三维立体图中选取平行于内侧结构梁的方向进行竖向剖切,将此切出弧线作为空间板的控制弧线。
2.4.2控制龙骨的制作
按特征弧线加工制作弧形控制龙骨,根据放样,得知弧形段向内弯曲的最大距离为190 mm,为保证龙骨厚度不小于100 mm,选用100 mm X 300 mm的通长方木加工制作成弧形主龙骨。
2.4.3模板支架安装
板下模架支架采用扣件式钢管脚手架支撑体系,立杆纵横向间距不超过900 mm,立杆步距不超过1200 mm,立杆接长采用对接扣件连接。在特征弧线上按照支架立杆间距选取控制点,根据预先确定的控制点位置搭设支托弧形控制主龙骨的立杆,除此之外的其他部位立杆按照支撑体系立杆的布置间距进行均匀搭设。
2.4.4模板安装
模板采用18 mm厚多层板,多层板裁成宽300 mm左右的长条形板,便于异型空间板模板拼装。既能保证异型空间的效果,又可重复周转使用,节约了成本。次龙骨采用50mmX 100mm方木,主龙骨除弧线处采用100 mm X 300 mm的通长方木加工外均采用100 mm X 100 mm方木。
弧形主龙骨设在支撑体系特征弧线相应位置的立杆顶部,既用于控制曲面板的空间位置及形状,又作为模板受力主龙骨。弧形主龙骨安装完成后,先铺设次龙骨,次龙骨垂直主龙骨方向设置,间距250mm,见图14。次龙骨在弧形主龙骨上安装完成后,空间板的形状已经确定,其他100 mm X 100 mm主龙骨根据对应位置安装调整立杆顶部U形托高度,使主龙骨与次龙骨顶实,主次龙骨间存在缝隙处,加三角形木楔进行固定。最后在次龙骨上拼接铺设长条形模板,长条形模板短边错缝拼接,将300 mm宽模板碎拼成弧形得到整块异型空间板的板底曲面。
3 其他技术措施
3.1测量放线
各层施工前先进行水平面上的放线,在各层平板上预留4个控制点观察口,直通1层,各层施工均需从1层引至施工层控制点。利用控制点引出结构八角的放射线和梁柱轴线。翼角梁外侧控制点从平板放射线引至下层翼角梁上端和外脚手架水平固定杆上,确保结构平面位置的准确。
3.2钢筋加工
梁柱构件多样,尺寸不一致,存在异型箍筋。放样完成后按照放样图和料单编号下料,下料后及时系上料牌,料牌上注明部位、梁编号和钢筋编号,且有钢筋规格、形状、数量,防止混用。并施行样板制度,样板先行,控制翼角梁端部异型曲线部位钢筋的弯折角度。每种异型尺寸箍筋加工前,现场实际放样,加工制作样板,放出箍筋加工尺寸,尤其是翼角梁斜向构件及梁与梁交叉部位的箍筋尺寸要准确。经过对比确定箍筋加工尺寸,并经验收合格后方可大量加工,加工中随时与样板进行比照。梁构件钢筋在两端节点处均需弯锚。两端钢筋的锚固长度和弯折点位置是钢筋工程中的难点。在钢筋加工前按1:1进行钢筋放样,加工样板钢筋后,进行对比和调整,严格按照样板钢筋加工。
3.3梁模架工程
多重梁下模板支撑脚手架受力较大,永定塔及周边群组工程三重梁高度叠加后达到2714 mm,属超大型截面梁。为保证支撑脚手架的整体稳定,必须单独进行支撑体系的计算,编制专项方案并组织专家论证,严格设置水平及竖向剪刀撑。
3.4浇筑混凝土
不同强度等级的混凝土浇筑时,先浇筑强度等级高的混凝土,后浇筑强度等级低的混凝土(必须在强度等级高的混凝土初凝前浇筑)。
浇筑混凝土前,柱底部应先填3050 mm与混凝土配合比相同的减石子砂浆,混凝土应分层振捣密实。严格控制混凝土的坍落度和扩展度,浇筑平托梁时坍落度控制在190210mm,浇筑翼角梁时坍落度控制在140160 mm o混凝土浇筑前,翼角梁上每隔1000 mm左右设一道竖向的钢丝网片,阻止混凝土向下流淌。对于曲面板采用吊斗输送混凝土,混凝土坍落度控制在100——120mm。
梁柱节点处,用于导入混凝土的钢管应随着混凝土的下料拔出,采用预先在插入钢管上固定直角扣件,并与另一钢管连接,随着混凝土每浇筑lm高,向上逐步旋转拔出。