高考数学知识点精选五点

| 收藏本文 下载本文 作者:他傢的大黄狗

下面小编为大家带来高考数学知识点精选五点(共含4篇),希望大家能够受用!同时,但愿您也能像本文投稿人“他傢的大黄狗”一样,积极向本站投稿分享好文章。

高考数学知识点精选五点

篇1:高考数学知识点精选五点

①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

② 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足。 ——《义务教育课程标准实验教科书 数学 四年级(上册)》

两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。——《义务教育课程实验教科书上海版 数学 四年级下册》(审定新版)

两条直线成直角,那么这两条直线互相垂直。

篇2:高考数学知识点精选五点

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱柱:

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。两个侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高

篇3:高考数学知识点

一、间断点求极限

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限 存在;

3、渐近线,(垂直、水平或斜渐近线);

4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

二、下面我们重点讲一下数列极限的典型方法。

(一)重要题型及点拨

1、求数列极限

求数列极限可以归纳为以下三种形式。

2、抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

(二)求具体数列的极限,可以参考以下几种方法:

a、利用单调有界必收敛准则求数列极限。

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

b、利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

(三)求项和或项积数列的极限,主要有以下几种方法:

a、利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

b、利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c、利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

d、利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e、求项数列的积的极限

一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

篇4:高考数学知识点

一、简单的逻辑联结词

1.用联结词且联结命题p和命题q,记作pq,读作p且q.

2.用联结词或联结命题p和命题q,记作pq,读作p或q.

3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作非p或p的否定.

4.命题pq,pq,綈p的真假判断:

pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.

二、全称量词与存在量词

1.全称量词与全称命题

(1)短语所有的任意一个在逻辑中通常叫做全称量词,并用符号表示.

(2)含有全称量词的命题,叫做全称命题.

(3)全称命题对M中任意一个x,有p(x)成立可用符号简记为xM,p(x),读作对任意x属于M,有p(x)成立.

2.存在量词与特称命题

(1)短语存在一个至少有一个在逻辑中通常叫做存在量词,并用符号表示.

(2)含有存在量词的命题,叫做特称命题.

(3)特称命题存在M中的一个x0,使p(x0)成立可用符号简记为x0M,P(x0),读作存在M中的元素x0,使p(x0)成立.

三、含有一个量词的命题的否定

命题 命题的否定

xM,p(x) x0M,綈p(x0)

x0M,p(x0) xM,綈p(x)

四、解题思路

1.逻辑联结词与集合的关系

或、且、非三个逻辑联结词,对应着集合运算中的并、交、补,因此,常常借助集合的并、交、补的意义来解答由或、且、非三个联结词构成的命题问题.

2.正确区别命题的否定与否命题

否命题是对原命题若p,则q的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;命题的否定即非p,只是否定命题p的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.

3.全称命题真假的判断方法

(1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;

(2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可.

4.特称命题真假的判断方法

要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.

高考数学知识点

高考数学知识点总结

高考数学会考知识点

高考备考数学知识点

高考数学必考知识点总结

考研数学做题五点建议

高考数学必修必考知识点总结

数学知识点

高考地理知识点

高考语文知识点

高考数学知识点精选五点(集锦4篇)

欢迎下载DOC格式的高考数学知识点精选五点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档