《鸽巢原理》的课后教学反思

| 收藏本文 下载本文 作者:一去不返

以下是小编整理的《鸽巢原理》的课后教学反思(共含13篇),欢迎阅读分享,希望对您有所帮助。同时,但愿您也能像本文投稿人“一去不返”一样,积极向本站投稿分享好文章。

《鸽巢原理》的课后教学反思

篇1: 《鸽巢原理》教学反思

鸽巢原理是数学广角的知识,比较抽象,学生难于理解,因此培养学生的兴趣很重要,只有调动学生的积极性,学生才能主动去思考去想办法,最后总结规律,找到解决问题的办法。因此课前我准备了一幅扑克,去掉大王和小王,在学生面前变魔术,我对学生说:“我随意抽出五张牌至少有两种牌是花色一样的。”有的同学半信半疑,有的同学说同意。于是我找三名同学到前面来实验,实验的结果和我是一样的。于是我有说:老师叫的三位同学玩这个游戏,不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?引入本节课的重点“总有……至少……”。

通过这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,通过学生归纳总结规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

篇2:《鸽巢原理》教学反思

一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩“抢凳子”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分”到各个鸽巢,看每个鸽巢能分到多少本书,剩下的书不管放到哪个鸽巢里,总有一个鸽巢比平均分得的本数多1本,可以用有余数的'除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。由于我提供的数据比较小,为学生自主探究和自主发现“鸽巢原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。

不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只鸽巢里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个鸽巢中?”这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。

篇3:《鸽巢原理》教学反思

鸽巢原理是数学广角的知识,比较抽象,学生难于理解,因此培养学生的兴趣很重要,只有调动学生的积极性,学生才能主动去思考去想办法,最后总结规律,找到解决问题的办法,鸽巢原理教学反思。因此课前我准备了一幅扑克,去掉大王和小王,在学生面前变魔术,我对学生说:“我随意抽出五张牌至少有两种牌是花色一样的。”有的同学半信半疑,有的同学说同意。于是我找三名同学到前面来实验,实验的结果和我是一样的。于是我有说:老师叫的三位同学玩这个游戏,不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?引入本节课的重点“总有……至少……”。

通过这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,通过学生归纳总结规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

篇4:《鸽巢原理》教学反思

本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。

反思如下:

1、从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。在上课伊始我就说“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一个凳子至少有两个同学”。相机引入本节课的重点“总有,至少”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

2、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。

篇5:《鸽巢原理》教学反思

鸽巢原理是一个重要而又基本的数学原理,通过本课教学向学生介绍抽屉原理的由来,并通过对一些简单实际问题进行模型化地研究,使学生理解抽屉原理。掌握一些研究问题的方法,达到会证明生活中的某些现象,会解决生活中的某些问题的目的。

本课教学时主要分以下几个层次:

一、创设情境,巧设悬念

通过猜月份相同这个情境引入,一是使教师和学生进行自然的沟通交流;二是调动和激发学生学习的主动性和探究欲望;三是为今天的探究埋下伏笔,初步理解“至少”的含义。

二、合作探究,建立模型

引导学生从简单的情况开始研究,渗透“建模”思想。通过学生独立证明、小组交流、汇报展示,使学生相互学习解决问题的不同方法。通过说理,沟通比较不同的方法,让学生理解:为什么只研究一种方法(平均分的思路)就能断定一定有“至少2只笔放进同一个笔筒中”这个过程主要解决对“至少”、“总有”“平均分”这些词的理解。再通过摆或假设法继续发现规律,在这个过程中抽象出算式,并在观察比较中全面概括、总结抽屉原理,建立起此类问题的模型。

三、鸽巢原理的由来

数学小知识鸽巢原理、抽屉原理的由来,采用了微课的方式呈现,向学生介绍了德国数学家——“狄里克雷”和他的“抽屉原理”。使学生感受到我们本课所发现的规律和150多年前科学家发现的一模一样,增加探究的成就感。同时了解到鸽巢原理最初的模型和在生活中的广泛应用,增加一些数学文化气息。

四、解决问题

通过举例、解决问题,开阔学生视野,回归课前,回归生活,通过不同类型题的设计,让学生灵活运用此原理解释生活现象。

篇6:数学广角-鸽巢原理教学反思

数学广角-鸽巢原理教学反思

活动设计中,我着重学生经历知识产生、形成的过程。4枝铅笔放进3个文具盒,让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述放铅笔最多的`抽屉里至少放几枝铅笔。在此基础上,进行优化,用假设法做最坏打算,使学生较好的理解了最简单的“抽屉原理”

在教学过程中注重了教学的直观性原则,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,并注视了直观的演示,使学生更好的理解的抽屉原理。

篇7:鸽巢原理获奖教学设计

鸽巢原理是组合数学中一个重要的初等原理,在解决一某类存在性问题中具有广泛应用,为了让学生更好理解,分享了鸽巢原理的教学设计,希望对大家有帮助!

一、教材分析

《鸽巢原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”加以解决。

二、学情分析

“鸽巢原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“鸽巢原理”。教学中应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“鸽巢原理”解决问题带来的乐趣。

三、教学理念

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“魔术游戏”,让学生置身游戏中开始学习,为理解鸽巢原理埋下伏笔。通过小组合作,动手操作的探究性学习把鸽巢原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

四、教学目标

1、知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、情感与态度:通过“鸽巢原理”的灵活应用感受数学的魅力。

五、教学重、难点

重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

六、教学过程

一、创设情境、引入新课

同学们,你们喜欢魔术吗?今天,老师也给大家变一个魔术,请5名同学参加这个游戏。

这是一副54张的扑克牌,我取出大小王,还剩52张,你们5人每人随意抽取一张,我知道至少有2张牌是同一花色的,你信吗?让我们带着疑问见证奇迹!

在这个游戏中蕴含着一个有趣的数学原理叫做鸽巢原理,这节课我们就一起来研究鸽巢原理。(板书课题)

二、自主学习、探究新知

(一)活动一:

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔。

(二)活动二:

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

(4)你能用更直接的方法,只摆一种情况,就能得到这个结论呢?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

(5)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

三、小组讨论、共同研究

3、研究铅笔比文具盒多1的情况

活动3、

类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

总结规律从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

深入研究活动4、

如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

问题:把6枝铅笔放在4个文具盒里,会有什么结果呢?

下面请你猜一猜:

1)、如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

2)、如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

你发现了什么规律?

介绍资料经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “ 鸽巢原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

四、展示评研、归纳提升

小结:从以上的学习中,你有什么发现?你有哪些收获呢?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

五、拓展延伸,巩固提升

做一做:

1)、7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

2)、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

(先让学生独立思考,在小组里讨论,再全班反馈)

3)揭穿谜底:

回答开始的问题: 我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

1.鸽巢原理教学设计

2.鸽巢问题优质教学设计

3.数学广角鸽巢问题教学设计

4.鸽巢问题单元教学设计

5.《春》获奖教学设计

6.抽屉原理教学设计

7.少年闰土获奖教学设计

8.获奖微课教学设计

9.去年的树获奖教学设计

10.四个太阳获奖教学设计

篇8:鸽巢原理获奖教学设计

一、单元教材分析:

本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

二、单元三维目标导向:

1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:

(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。

(2)理解知识的产生过程,受到历史唯物注意的教育。

(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。

三、单元教学重难点

重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。

难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

四、单元学情分析

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将

这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的.学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

五、教法和学法

1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

篇9:鸽巢原理获奖教学设计

一、教材分析

《鸽巢原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”加以解决。

二、学情分析

“鸽巢原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“鸽巢原理”。教学中应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“鸽巢原理”解决问题带来的乐趣。

三、教学理念

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“魔术游戏”,让学生置身游戏中开始学习,为理解鸽巢原理埋下伏笔。通过小组合作,动手操作的探究性学习把鸽巢原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

四、教学目标

1、知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、情感与态度:通过“鸽巢原理”的灵活应用感受数学的魅力。

五、教学重、难点

重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

六、教学过程

一、创设情境、引入新课

同学们,你们喜欢魔术吗?今天,老师也给大家变一个魔术,请5名同学参加这个游戏。

这是一副54张的扑克牌,我取出大小王,还剩52张,你们5人每人随意抽取一张,我知道至少有2张牌是同一花色的,你信吗?让我们带着疑问见证奇迹!

在这个游戏中蕴含着一个有趣的数学原理叫做鸽巢原理,这节课我们就一起来研究鸽巢原理。(板书课题)

二、自主学习、探究新知

(一)活动一:

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔。

(二)活动二:

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

(4)你能用更直接的方法,只摆一种情况,就能得到这个结论呢?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

(5)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

三、小组讨论、共同研究

3、研究铅笔比文具盒多1的情况

活动3、

类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

总结规律从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

深入研究活动4、

如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

问题:把6枝铅笔放在4个文具盒里,会有什么结果呢?

下面请你猜一猜:

1)如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

2)如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

你发现了什么规律?

介绍资料经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “ 鸽巢原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

四、展示评研、归纳提升

小结:从以上的学习中,你有什么发现?你有哪些收获呢?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

五、拓展延伸,巩固提升

做一做:

1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

2)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

(先让学生独立思考,在小组里讨论,再全班反馈)

3)揭穿谜底:

回答开始的问题: 我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

篇10:《鸽巢问题》教学反思

“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。

兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。借机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与。

篇11:《鸽巢问题》教学反思

数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。练习内容紧密联系生活,让学生体会数学来源于生活。练习由易到难,层层递进,符合学生的认知规律。在练习中,学生兴趣盎然,达到了预期的效果。

不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几本书?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几本书放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。

篇12:《鸽巢问题》教学反思

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“鸽巢问题”的探究过程,从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”。本节课教学在师生互动方面有以下特色:

1、激趣引入

在导入新课时,我以游戏引入,不仅激发学生的兴趣,提高师生双边互动的积极性,更是让学生初步感受到鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的问题,好玩又有意义,唤起学生继续参与课堂互动的意愿。

2、提供探索空间

本节课充分发挥学生的自主性,首先让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝铅笔”。接着同桌互动演示并尝试解释这种现象发生的原因。最后,全班交流展示,多元评价各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

3、营造提问的空间

本节课注重给学生创造提出问题的机会,让学生去品尝提出问题、解决问题的快乐。如在出示“5只鸽子飞进了3个鸽笼”问学生看到这个条件你想提怎样的数学问题?这样间接培养学生的问题意识。

篇13:《鸽巢问题》教学反思

一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。

一、情境导入,初步感知

兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。

二、教学时以学生为主体,以学定教

由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的'同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。

三、通过练习,解释应用

四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。

不足:

1、学生们语言表达能力还有待提高。

2、课堂中教师与速较快。

鸽巢问题教学反思

鸽巢问题教学课件

鸽巢问题教学设计

鸽巢问题一教学设计

鸽巢问题优秀教学设计

数学广角“鸽巢问题”教学设计

课后教学反思

课后教学反思

教学课后反思

教学课后反思

《鸽巢原理》的课后教学反思(推荐13篇)

欢迎下载DOC格式的《鸽巢原理》的课后教学反思,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档