下面是小编整理的八年级数学教学设计:正方形(共含15篇),欢迎您阅读,希望对您有所帮助。同时,但愿您也能像本文投稿人“芸一公主”一样,积极向本站投稿分享好文章。
八年级数学教学设计:正方形
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
动画演示:
场景五:平行四边形、矩形、菱形、正方形之间的关系
场景六:平行四边形、矩形、菱形、正方形之间的性质关系
师:当然平行四边形、矩形、菱形和正方形它们之间的关系还可以用下图(图1)表示:
图1
师:请同学们把平行四边形、矩形、菱形和正方形它们之间的关系以及平行四边形、矩形、菱形和正方形它们之间的性质关系整理在笔记本上。
例题讲解
例1 在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC ∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论如果用图来表示,是不是如图2所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生疑惑不解。]
师点取上等学生回答问题,根据回答得图4。
生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的`判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(1)对角线相等的菱形是正方形吗?
(2)对角线互相垂直的矩形是正方形吗?
(3)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(4)能说“四条便都相等的四边形是正方形吗?”
(5)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景七:正方形的判定
例题讲解
例2 如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要根据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证明A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证明:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中常常出现,要注意隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
正方形数学教学设计
课题:正方形(一)
教学目标:
1、能说出正方形的定义和性质。会运用正方形的概念和性质进行有关的论证和计算。
2、通过一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系。
3、在探究正方形性质的过程中,发现正方形的结构美和应用美,激发学生学习数学的热情。
重点:正方形的定义和性质。
难点:选择适当的方法解决有关正方形的问题。
教学过程:
一、回顾交流,逆向思索
在小学学过的平行四边形、矩形、菱形、正方形这些特殊的四边形中,我们已学了平行四边形、矩形、菱形的定义、性质和判定,而正方形还没有研究过,根据小学学过的正方形的知识,同学们能说出它的哪些性质?
正方形四条边相等;正方形四个角是直角;正方形的面积等于边长的平方。
二、创设情景,提出问题
生活中有很多地方用到正方形,我们感到正方形很熟悉,但对已学过的平行四边形,矩形、菱形比较,对正方形还没有深入地研究,同学们不想知道它其中的奥妙吗?
1、正方形四条边有什么关系?四个角呢?
2、正方形是矩形吗?是菱形吗?为什么?
3、正方形具有哪些性质呢?
三、激思探索,研究问题
1、做一做:用一张长方形的纸片(如图所示)折出一个正方形。
问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形。
我们从它的定义可以发现,正方形是特殊的矩形,即邻边相等的矩形;也是特殊的菱形,即有一个角是直角的菱形;而矩形、菱形又是特殊的.平行四边形,所以正方形也是特殊的平行四边形,即一个角是直角且一组邻边相等的平行四边形。
类比平行四边形、矩形、菱形、的性质我们来研究正方形的性质,可以从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线三个方面进行归纳总结。
边:正方形四条边都相等;对边平行;
角:正方形四个角都是直角;
对角线:正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
四、反思归纳,解决问题
正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形。
正方形性质:
(1)边的性质:对边平行,四条边都相等。
(2)角的性质:四个角都是直角。
(3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角。
(4)对称性:是轴对称图形,有四条对称轴。
【例4】求证正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形。
已知:如图四边形ABCD是正方形,对角线AC、BD相互交于点O。
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形。
证明:∵四边形ABCD是正方形,
∴ACBD,AC⊥BD。
∴AO=BO=CO=DO。
∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形。
并且△ABO≌△BCO≌△CDO≌△DAO。
拓展讨论:
1、图中有多少个等腰直角三角形。
2、正方形ABCD有多少条对称轴?请分别写出这些对称轴。
解析:图中共有八个等腰直角三角形,它们分别是△ABO、△BCO、△CDO、△DAO、△ABD、△BCD、△ABC、△ADC。且△ABO≌△BCO≌△CDO≌△DAO;△ABD≌△BCD≌△ABC≌△ADC。
连接正方形对边中点的连线是对称轴,这样的对称轴有两条;两条对角线也分别是正方形的对称轴,所以正方形共有四条对称轴。这进一步体现了它既有矩形的性质,同时也具有菱形的性质。
五、巩固深化,应用问题
1、如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG。
求证:BG=CE。
2、已知:如图,△ABC中,∠ACB=90°,CD是角平分线,DE⊥AC,DF⊥BC,垂足分别是E、F。
求证:DECF是正方形。
证明:DE⊥AC∠DEC=90°
DF⊥BC∠DFC=90°四边形DECF是矩形
∠ACB=90°
CD平分∠ACB
DE⊥ACDE=DFDE=DF
DF⊥BC
四边形DECF是正方形
六、总结拓展,升华问题
已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F。
(1)求证:DE=DF。
(2)只添加一个条件,使四边形EDFA是正方形。
教学目标:
(一)教学知识点
1、菱形的定义。
2、菱形的性质。
3、菱形的判定。
(二)能力训练要求
1、经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法。
2、了解菱形的现实应用和常用判别条件。
(三)情感与价值观要求
1、在操作活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。
2、在学习过程中,来体会菱形的图形美和内在美。
教学重点:菱形的性质及判定方法。
教学难点:菱形性质和直角三角形的知识的综合应用。
教学过程:
一、巧设情景问题,引入课题
前面我们探讨了平行四边形的性质和判别条件,下面我们来共同回忆一下。大家来看一个衣帽架(出示衣帽架,并按课本P93的图片进行变换),这个衣帽架中有你熟悉的图形吗?(邻边相等的平行四边形。)我们把这样的平行四边形叫做菱形。这节课我们就来探讨一下菱形。
二、新课
你能给菱形下定义吗?(一组邻边相等的平行四边形叫做菱形。)菱形是一种特殊的平行四边形,特殊之处在于它是有一组邻边相等。所以菱形是具备:“①平行四边形,②一组邻边相等”。这两个条件的四边形。下面大家画一个菱形,然后回答下列问题
如图,在菱形ABCD中,AB=AD,对角线AC、BD相交于点O。
(1)图中有哪些线段是相等的?哪些角是相等的?(2)图中有哪些等腰三角形、直角三角形?
(3)两条对角线AC、BD有什么特定的位置关系?(同学们讨论分析回答)
同学们分析得很好,能否从中归纳出菱形的性质呢?
因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:
1、菱形的四条边都相等。
2、菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?
(菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直。)
同学们回答得很好,我们知道了菱形的性质,那想一想如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?大家拿出准备好的白纸,小剪刀来动手做一做。
(学生想――动手折、剪,教师指导,然后出示两种及学生总结的折纸、剪切的方法)
方法一:将一张长方形的纸横对折,再竖对折(如P92的图),然后沿图中的虚线剪下,打开即是菱形纸片。
方法二:如图(P94的图),两张等宽的纸条交叉重叠在一起,重叠的'部分ABCD就是菱形。(如图1)
方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形。(如图2)
你能说一说按这三种方法做的理由吗?大家讨论一下回答。
方法一主要是利用了菱形的轴对称性。按方法一剪出如图所示的图形。以BD所在的直线对折时,OA=OC,以AC所在的直线对折时,OB=OD,这时四边形ABCD是平行四边形,又因为两条折痕是互相垂直的,即:AC⊥BD,又OA=OC,所以BD是AC的中垂线。即AB=BC,因此平行四边形ABCD是菱形。
按方法二得到的四边形是菱形的理由是:这个四边形的两组对边分别在纸条的边缘上,它们彼此平行,它是平行四边形;分别以一组邻边为底写出这个平行四边形的面积(都是底乘高),再由纸条等宽即它们的高相等,立即得到这组邻边相等。
按方法三得到的菱形的理由是:如图2,△ABC是以BC为底的等腰三角形,所以AB=AC,以BC为折痕,对折后,得到的三角形BCD仍是等腰三角形,即:BD=DC,又因为AB=BD,DC=AC,所以AB=CD,BD=AC,所以四边形ABDC是平行四边形,又AB=AC,因此,平行四边形ABDC是菱形。
刚才通过折纸、剪切,得到了菱形,你能因此归纳一下菱形的判别方法吗?分组讨论,然后总结:菱形的判别方法:
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边都相等的四边形是菱形
(要注意的是:菱形的判别方法的题设条件是平行四边形还是任意四边形。)
好,下面大家完成P94的议一议)。
三、应用
例1、(书上95页例1)
[师生共析]从图中知道:AC与BD是相交,从已知条件:AB=,OA=2,OB=1。结合图形知道:这三条线段正好构成三角形。又由于AB2=OA2+OB2,所以可以知道:△AOB是直角三角形,因此可以得出:AC与BD互相垂直。
由于四边形ABCD是平行四边形,它的对角线互相垂直,所以由此可知:平行四边形ABCD是菱形。
[例2]如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于F,交AC于E,若EG⊥BC于G,连结FG。
求证:四边形AFGE是菱形。
分析:要判别四边形AFGE是菱形,要先证它是平行四边形,然后再寻找邻边相等的条件,而要证明它是平行四边形,要找出平行四边形的判定条件。
四、小结
本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下:
菱形的定义:一组邻边相等的平行四边形是菱形。
菱形的性质:边:四条边都相等
对边分别平行
角:对角线相等
对角线:互相垂直、平分,每一条对角线平分一组对角。
菱形的判定:
五、课后作业:
教学反思:菱形是特殊的平行四边形,然后让学生自主探索菱形除平行四边形具备的性质外它本身所具有的特殊性。发展学生合情的逻辑推理过程,逐步规范格式。相关的计算要注意规律。从本节课内容来看要求比较高。基础差一点的同学掌握起来是略为困难了些。
教学目标
①从学生熟悉的情境出发,经历从图中分析变量之间关系的过程,理解函数图象的意义。会对实际生活中的例子用两变量之间关系的图象进行描述表达,初步认识函数与图象的对应关系。
②学会观察图象、识别图象及理解图象所表示的含义。了解图象的意义及其与实际轨道之间的关系和区别。
③渗透数形结合思想,体会到数学来源于生活,又应用于生活。培养学生的团结协作精神、探索精神和合作交流的能力。
教学重点与难点
把实际问题转化为函数图象,再根据图象来研究实际问题。
教学准备
三角尺、CAI课件。
教学设计
提出问题
下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t的变化而变化。你从下图中得到哪些信息?
注:挖掘和利用现实生活中与函数图象有关的背景,让学生在观察背景中认识、理解函数的图象。
“做一做”解决生活中的数学问题,为的是进一步理解函数图象的意义。引导学生主动参与学习过程,从而培养合作交流能力。
解决问题
下面的图象反映的过程是:小明从家里出发去菜地浇水,又去玉米地锄草,然后回家。其中x表示时间,y表示小明离他家的距离。
根据图象回答下列问题:
1、菜地离小明家多远?小明走到菜地用了多少时间?
2、小明给菜地浇水用了多少时间?
3、菜地离玉米地多远?小明从菜地走到玉米地用了多少时间?
4、小明给玉米地锄草用了多少时间?
5、玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
注:以课本例题中的实际生活问题为素材,使学生感受到数学来源于生活,激发学生学数学的兴趣。师生共同参与合作,完成几个问题的探讨。体现了以学生为主体,教师成为问题解决的组织者、引导者与合作者这一新课程教学理念。
总结归纳
围绕下面两点,以师生共同交流的方式进行归纳:
(1)函数图象会使函数关系更为清晰,怎样画出函数的图象呢?
(2)如何根据函数图象中获得的信息来研究实际问题?
八年级数学教学设计
教学目标
1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2.理解完全平方式的意义和特点,培养学生的判断能力.
3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.
4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。
教学重点和难点
重点:运用完全平方式分解因式.
难点:灵活运用完全平方公式公解因式.
教学过程设计
一、复习
1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4.
解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n).
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式.
请写出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
这节课我们就来讨论如何运用完全平方公式把多项式因式分解.
二、新课
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1.
答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) .
(2)不是完全平方式.因为第三部分必须是2xy.
(3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) .
(4)不是完全平方式.因为缺第三部分.
请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y.
例1 把25x4+10x2+1分解因式.
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1- m+ 分解因式.
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的`平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.
解法1 1- m+ =1-2·1· +( )2=(1- )2.
解法2 先提出 ,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2.
三、课堂练习(投影)
1.填空:
(1)x2-10x+2=()2;
(2)9x2+()+4y2=()2;
(3)1-()+m2/9=()2.
2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式.
(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4.
3.把下列各式分解因式:
(1)a2-24a+144;(2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2.
答案:
1.(1)25,(x-5) 2;(2)12xy,(3x+2y) 2;(3)2m/3,(1-m3)2.
2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.
(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.
(3)是完全平方式,a2-4ab+4b2=(a-2b)2.
(4)是完全平方式,9m2+12m+4=(3m+2) 2.
(5)是完全平方式,1-a+a2/4=(1-a2)2.
3.(1)(a-12) 2;(2)(2ab+1) 2;
(3)(13x+3y) 2;(4)(12a-b)2.
四、小结
运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.
2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.
五、作业
把下列各式分解因式:
1.(1)a2+8a+16;(2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4.
2.(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.
3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4.(1) x -4x; (2)a5+a4+ a3.
答案:
1.(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)(y+12)2.
2.(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2;(4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2.
3.(1)(mn-1) 2
教学内容:
江苏教育版课程标准教科书三年级上册58—60页
教学目标:
1、引领学生经历探索长方形、正方形特征的过程,初步掌握长方形和正方形的基本特征。
2、在探究过程中,注重学生观察、操作、猜想等数学思维能力的培养。
3、创设互相协作的学习情境,使学生在合作中体验成功的快乐。
教学重点:
长方形和正方形的特征
备课重点:
长、正方形的特征,已有的学情分析都表明学生是大致认识的。这样的状况并不表明,教学就此轻松,而恰恰给教学带来了更大的挑战性因为似懂非懂,新知也就失去了其应有的吸引力;因为一知半解,教学也就更不易组织和深入。
重点思考:
怎么基于而又超越学生已有的认知基础。在处理教学细节时,突出了
特征的揭示,怎样出自学生自己,而且又是兴趣盎然的?
验证的安排,怎样超越细枝末节而又重点突出,在取舍中凸显教学智慧?
生活的联系,怎样从司空见惯中提炼新的题材和赋予更多的数学思考?
特征的运用,怎样紧扣两个图形的特征提高数学思考的含金量?
教学过程:
一、游戏引入,揭示长方形特征
1.已经认识长方形和正方形的小朋友举举手?闭上眼睛想一想,长方形是什么样的?
在桌上找一找什么颜色的图形是长方形?
学生找到了大大小小的长方形。
2.通过以前的学习,大家对长方形已经有了大体的认识,接下来,我们来玩一个猜猜它是不是长方形的游戏,看看大家对于长方形的了解到底有多少?
①号图形(一个角是锐角的图形),是长方形吗?用手中的长方形说清楚理由。反衬出长方形内角是直角。
②号图形(直角梯形)这个是吗?从边和角两个方面去看,得出长方形对边相等,有四个直角。
3.组织学生验证长方形边的特征。
长方形真的上下边相等、左右边相等吗?用手中的长方形验证一下,再和同桌说一说。
学生验证,再交流汇报。
①量。由于学生手中的长方形有大有小,所以测量出来的数据各不相同,但每一个个体的测量结果都证明了长方形对边相等。
②折。不借助工具,直接把长方形纸上下对折,发现上下边重合,从而得出长方形上下边相等;再把长方形纸左右对折,发现左右边重合,得出左右边相等。折两次,也能说明长方形对边相等。
4.我把这个图形这样放,是长方形吗?这样呢?通过变式,让学生体会到只改变图形的位置不改变它的形状,它仍然是长方形。
5.介绍长方形的长和宽
长方形一组对边长、一组对边短,通常我们把长边的长叫做长,短边的长叫做宽。组织学生指一指手中长方形的长和宽,说一说屏幕上长方形的长和宽。
二、承上启下,揭示正方形的特征
1.多次缩短长方形的长边,让学生体会长方形长和宽长度关系的变化。并由此想象,会不会变成一个特别的长方形?
这个特别的长方形其实还有一个名字叫正方形。
2.根据已有学习经验,推测正方形的边和角有什么特征呢?
3.重点说明正方形边的特征。
你能想办法说明正方形的四条边都相等吗?用手中的正方形做一做,再和同桌说一说。
①量量四条边,发现四边相等。
②折从学生中搜集各种不同的折法,全班交流讨论,发挥集体的智慧,得出正方形四条边都相等。
4。介绍正方形的边长
既然正方形四条边都一样长,我们把正方形每条边的长叫做边长。
5。比较长方形和正方形的异同
长方形和正方形分别有哪些特征,他们有什么相同的地方,又有哪些不同。
三、链接生活,综合运用
1.生活中的长方形和正方形。
(1)找一找生活中的长方形
生活中你在哪见过长方形或正方形,找找看。
(2)长方形餐巾纸
这是什么?从这里也能找到长方形吗?这是一张多大的长方形纸巾呢?产品规格里就有,找找看。
能看懂什么意思吗?
介绍餐巾纸的规格。你知道这个规格介绍和这张长方形的纸巾有什么联系?引导学生猜想,并通过测量的'方法验证。
(3)正方形餐巾纸
到超市里买正方形的纸巾,根据包装盒上的介绍应该选哪一种呢?说一说理由。
(4)卷纸
能看懂这个规格介绍吗?
这筒卷纸上哪里有长方形?知道长方形纸巾的规格吗?一卷完整的纸巾一共有多少段?把它全部展开会是一个怎样的图形?这个长方形的长是多少?宽呢?
2.路线图中的长方形和正方形
机器人从家出发,去书店走了多少米?如果去书店呢?去商场呢?
路线图上只标注三个数据,能说出机器人去三个不同的地方分别走了多少米吗?引导学生根据长方形对边相等、正方形四边相等的特征解释没有标到数据的路线的长度。
3.画长方形和正方形
(1)你们会画长方形吗?在方格纸上画一个。
(2)你画了一个多大的长方形呢?怎样才能说清楚。请几位同学边展示边说清楚。
(3)在刚才的长方形中画一个最大的正方形,正方形的边长是多少厘米?你画出的最大正方形和原来的长方形有什么联系?
(4)一位同学说长方形的长和宽分别是多少厘米,其余同学猜一猜他画的最大正方形边长是多少厘米?
(5)(随机)长方形中剩下的小长方形长和宽分别是几厘米?
(6)(随机)从他的长方形中,我找到了两个一模一样的正方形,正方形边长是厘米,你知道他画的长方形长和宽分别是多少厘米?
四、总结提升
交流今天所学的内容,体会学习数学的快乐
教材分析:
《长方形和正方形的周长》是人教版《义务教育课程标准实验教科书。数学》三年级上册第三单元的内容。本课内容是在前几册直观认识角、线段以及三角形、长方形和正方形特征的基础上,老师和学生一起认识探究长方形和正方形的周长,并理解掌握周长的计算。通过学生动手操作测量,小组一起讨论学习计算长方形、正方形周长的方法。要求进一步培养学生学习几何初步知识的兴趣和合作学习能力,为后面学习周长公式的变式运用及拓展和四五年级的长、正方形的面积等的学习作铺垫,是一个承上启下的内容。
学情分析:
本课内容对象是三年级学生。从心理特征和族状况来说,他们已经有一定的知识储备,对未来世界充满着更多的猜想和探索欲望。他们的年龄特点主要还是以直观教学为主,通过动手实践测量,小组合作学习讨论交流,丰富学生的感性到理性的认识。《数学课程标准》也指出:动手实践,自主探索,合作学习是学生学习数学的重要方式。因此,本课的设计就以这一基本理念为指导,强调以学生为中心和以自主探究为主线,紧密联系学生的生活经验和活动经验,借助多媒体教学的直观手段,点燃学生的思维火花,使学生在学习交流中主动探究,获取知识,获得成功体验。
教学目标:
1、通过学生的观察、测量、讨论的活动,使学生认识长方形和正方形周长计算的过程,进一步理解周长的意义,掌握长方形和正方形周长的计算方法。
2、使学生能运用长方形和正方形周长计算的方法解决实际生活中的简单问题,感受数学在日常生活中的应用,感知图形知识与实际生活的联系。
3、发展学生的初步空间观念,培养学生独立思考和合作学习的意识。
教学重点:
掌握长方形和正方形周长的计算方法。
教学难点:
掌握长方形周长的计算方法和在现实生活中的应用。
教法学法:
新课标指出:教师应向学生提供充分从事教学活动的机会。根据这一理念,本课教学力求放手让学生全程参与到数学活动中来,运用故事情境教学法、引探式教学法、小组合作学习法、练习教学法等方法为学生找寻良好的教学平台。引导学生通过观察、思考、动手测量、交流、总结等教学活动,并以小组讨论交流等多种形式,让学生自由探索、发散思维,从而解决问题掌握知识。本节课在实现知识与技能目标的同时更侧重于过程性电影票的落实。
说教学过程:
1、创设故事情境,激趣导入
我将这样导入新课同学们,老师给大家讲一个喜羊羊和灰太狼的故事好不好?喜羊羊和灰太狼在赛场上赛跑,跑道分别是长方形和正方形。(出示课件)大家快看,喜羊羊获胜了,灰太狼气急败坏地跳起来喊:不公平,不公平,我的跑道长!喜羊羊也急了:我的跑道才长呢!看来没有人帮忙他们俩可能会无休止的争吵下去了。同学们来猜一猜,谁的`跑道长呢?灰太狼可不是光凭我们的猜想就能说服的,我们必须用科学的方法进行验证才能让它心服口服。那么你觉得他们赛跑的路线和我们所学的什么知识有关呢?我们今天就一起来探究长方形和正方形的周长问题。(设计意图:采用学生感兴趣的动画人物,喜羊羊和灰太狼赛跑的故事进行导入,既直观形象又易理解,引发学生们的兴趣,进行提出问题:谁的跑道长呢?从而引出《长方形和正方形的周长》这个课题。故事的最后设置悬念,告诉学生学习了本节课就能揭开谜底,充分调动了学生的好奇心。导入环节让学生从玩中切入问题,不知不觉进入学习状态,提高了学生的学习兴趣。)
2、探究新知
(1)教师提问:同学们有什么好办法能帮助喜羊羊和灰太狼解决周长问题吗?教师顺势引导:如果用尺子量,需要量出几条边呢?
(2)(长方形的长和宽分别是6米和4米,正方形边长是5米。)请同学们根据老师给出的数据,小组合作动手实践,帮助喜羊羊和灰太狼解决周长问题。
(3)交流个性化方法。
师:同学们是用什么方法求出了长方形的周长呢?
6+4+6+4=20(米)即:周长=长+宽+长+宽
62+42=20(米)即:周长=长2+宽2
(6+4)2=20(米)即:周长=(长+宽)2
老师通过提问,上面三种方法中,同学们最喜欢用哪种方法?为什么?
板书:长方形的周长=(长+宽)2
(设计意图:在谈感受中优化算法,体现出学生的思维方式,认识上的差异,培养善于发现问题,敢于解决问题的能力。)
老师引导学生来求正方形的周长。学生得出两种计算方法
①就是把四条边的长度加起来。即:5+5+5+5=20(米)
②正方形的周长只要用边长乘4就行了,因为正方形的边长都一样长。即:54=20(米)
问:你们喜欢哪一种方法?(比较取优,归纳方法)
板书:正方形的周长=边长4
(设计意图:让学生能够在课堂上说出自己的想法,主动参与课堂的教学,主动与老师同学一起交流学习情况,老师也可以据此了解学生的动态,学生是否掌握了计算正方形周长的这两种方法,从而改进改进教学方法。另外,由结果可知喜羊羊和灰太狼的跑道一样长,呼应导入)问:在计算长方形和正方形的周长时,无论用哪一种方法,都必须知道什么条件?(对长方形来说:长和宽;对正方形来说:边长)
(设计意图:学生逆向思维思考长方形和正方形的周长与什么有关系。)
3、巩固新知,应用于生活
①做练习十第1题的第(1)、(2)小题,先量一量,再计算它们的周长。
②(一张相片长5分米,宽3分米)要给相片做一个相框,至少用多长的木条?
(5+3)2=16(分米)
③用两个边长是1厘米的正方形拼成一个长方形,这个长方形的周长是多少?
长:1+1=2周长:(2+1)2=6(厘米)
④一个长方形的水池,周长是56米,水池的长是18米,它的宽是多少米?
562—18=10(米)(设计意图:练习巩固新知,检查学生掌握新知识的情况,练习的难度层层递进,解决生活问题。)
4、巧设总结
争谈收获同学们:通过这节课的学习,你学到了什么知识呢?(学会了求周长的好多方法!我最喜欢的方法是:长方形的周长=(长+宽)2正方形的周长=边长4)
(设计意图:引导学生对自己所获取的知识进行反思和疏理,为牢固建构知识提供坚实的保障,同时,使学生感受到数学课堂不仅是获取知识的场所,更是产生思想的源头。)
5、作业设置:教材练习十1,2题
板书设计:
板书设计要简洁有效,重点突出,让学生看了一目了然,使教学内容在学生的头脑里留下极其鲜明深刻的印象。基于这一理念,我的板书设计如下:
长方形和正方形的周长长方形的周长=(长+宽)2正方形的周长=边长4方法16+4+6+4=20(米)方法15+5+5+5=20(米)长+宽+长+宽=周长边长+边长+边长+边长=周长方法262+42=20(米)方法254=20(米)长2+宽2=周长边长4=周长方法3(6+4)2=20(米)(长+宽)2=周长
教学目标:
1、通过观察、操作,能用自己的语言描述长方形、正方形的特征。
2、在对长方形、正方形特征的探索过程中学会与他人合作、交流。
3、在他人的帮助与鼓励下,能积极地参与长方形、正方形特征的探索,并从中获得成功的体验,建立学好数学的信心。
教学重难点:
长方形、正方形特征的认识是重点,小组合作探索长方形、正方形的特征是难点。
教学准备:
长方形纸片、正方形纸片、画有长方形和正方形的纸板、方格纸、小棒、三角尺、直尺、钉子板、实物投影仪。
教学过程:
一、创设情景
1、小朋友们,在我们的生活中,有许多图形在装扮着我们的学习与生活。
请同学们仔细观察我们的教室内前面有什么,后面有什么。
让学生观察后,交流发现了哪些图形。
2、在我们的生活中,哪些地方有长方形?哪些地方有正方形?学生找生活中的长方形和正方形,并交流。
教师:好!同学们已经能辨认出长方形和正方形了。
长方形和正方形各有什么特征呢?这就是我们今天要探讨的问题。
板书课题:
长方形、正方形的认识。
二、自主探索
请各小组在学具中选用所需的材料开始研究长方形、正方形的特征,小组长要做好分工,并注意把研究结果记录下来,准备汇报。
学生开始活动,教师巡视指导、点拨,鼓励学生选用不同的材料和方法进行研究。学生也可以到其他组去看一看、学一学,交流一下。
三、小组汇报
每个小组都完成了实验,请大家来汇报一下你们小组的实验情况,汇报时要说清楚选用的实验材料、方法和研究的结果。教师根据学生的汇报情况,有选择地板书汇报的内容要点。
学生的汇报可能有以下几种情况
(1)选用画有长方形和正方形的纸板、直尺和三角尺。
(2)利用先数、再量、最后比的方法。
①通过数,发现长方形、正方形都有4条边、4个角。
②通过用直尺量,发现长方形较长的两条边一样长,较短的两条边也一样长。
③用三角尺的直角比长方形、正方形的角,还发现长方形、正方形的4个角都是直角。
学生汇报后,引导学生观察两条较长的边,它们的位置正好是相对的,所以我们把它们叫做相对边。同样,两条较短的边也是相对的`边。从而得出:长方形的对边相等。
(1)选用长方形纸片、正方形纸片、三角尺。
在研究正方形的特点时,是通过折纸得出的。学生这样折:正方形的4条边全部重合了,说明正方形的4条边都相等。学生这样折:正方形4个角完全重合了,说明正方形的4个角都相等。
(2)选用钉子板。
通过数格子,发现长方形长边、短边所占格子个数不同,而正方形的4条边都占相同的格,说明长方形的对边相等、正方形的4条边都相等。(在学生汇报的同时,师生共同整理结论,形成以下板书)长方形边:有4条边,对边相等角:4个角都是直角正方形边:4条边都相等角:4个角都是直角
四、巩固拓展
1、用两副同样的三角尺分别拼出1个长方形和1个正方形,你能拼出来吗?试一试。根据拼的情况,进行展示、交流。
2、(1)请在内填上适当的数,并说一说为什么这样填。
(2)对于上面的长方形纸片,你能折出一个最大的正方形吗?如果能折出来,这个正方形的边长是多少?(对于(2)题,学生如果有困难,教师要给予适当的引导)
(3)请你把下边的图形用一条线分成1个长方形和1个三角形,试画出这条线。
(4)中有()个长方形,()个正方形。教师要适时引导学生有序地数图形,要重视学生学习策略的展示。
五、课堂小结
今天你学了什么?认识了哪些新朋友?在生活中,什么情况下要用到长方形和正方形?说一说。
八年级数学的教学设计
一、学生情况分析:
本 年级 学生: 87 人,其中男生 52 人,女生: 25 人。上期末数学考试最高分 96 分,最低分 30 分,平均分 82 ,.总体上看,学生的数学成绩 达到预期目标, ,优生率为5 0 % 以上 、及格率 95 % 以上 ;在学生的数学知识上看,基本概念,基本计算 掌握较好, 基本的空间与图形知识都 较 欠缺;数学的思维 较差 ;大部分学生对数学兴趣 较浓 。
二、教材分析:
1、体系结构:
(1)数学内容的引入,采取从实际问题情景境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过问题解决的过程,获得数学概念,掌握解决数学问题的技能和方法。
(2)教材内容的呈现,努力创设学生自主探究的学习情况和机会,适当编排应用性、探索性和开放性的,发挥学生的主动性、留给学生充分的时间与空间,自主探索、促进学生数学思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。
(3)教材内容的编写,把握课程标准,同时又具有弹性,编入一些选学内容,以适应较高程度学生学习的需要,使不同水平的学生都得到发展。
(4)教材内容的叙述、行当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体,激发学生学习数学的兴趣,引导学生体会数学的`文化价值。
(5)现代信息技术的应用在教材中占有适当地位,有利于学生理解概念、自主探索、实践体验。
2、教材体例。
(1)教材的正文中,根据教材内容的实际需要,适当设置了一些相应的栏目。如“观察”、“思考”、“实验”、“想一想”、“试一试”、“做一做”等,给学生适当的思考空间,让学生通过自主探索,获得体验和感受,掌握必要的知识。
(2)结合教材各块内容,安排一些有关的阅读材料,涉及数学史料、数学家故事、实际生活中的问题、数学趣题、知识背景等,扩大学生的知识面,增强学生的应用意识和对数学的兴趣,对学生进行爱国主义和人文主义精神教育。
(3)控制习题总量,降低难度,增加探索、开放、实践类型的习题,按照不同的要求,编制不同水平的练习题,按课时给出随堂练习,每一节设置习题,每章的复习题设程度不一的A、B、C、三组,以满足不同层次的学生的发展需要。
(4)增强了研究性课题学习,给学生更多的发展空间,让学生自己动手,提高解决问题与合作交流的能力。
(5)每一章的开始,设置有展现该章主要内容的导图与导入语,以期激发学生的学习兴趣与求知欲。
三、教学方法及措施:
让学生明确学习目的、端正学习态度,给学生以理想前途教育,培养学生对数学学科的学习兴趣,教给学生学习方法,多与学生勾通,多和学生一起分析问题,培养学生解决问题能力。深入钻研教育教法,精心备课,精心设计教学环节,习题降低教学坡度和教学难度,认真反思自己的教育教学过程。
四、培优、转差措施:
根据学生的不同基础情况分别给予学生不同教学要求,按学生的不同基础布置不同的作业,因材施教。多与差生交流,与差生交朋友,分析差生差的原因,给差生以信心和关心,尽量给差生降低学生上的坡度;对于优生教师利用课余时间拓宽学生知识面,培养学生分析问题解决问题能力。在教学中适当对知识进行拓展,给优生以充分思索的空间,多让优生自主探索,鼓励优生合作交流。
五、本期最终要达到的目标:
期末考试优生率 50 %以上, 高分率 20 % , 及格率 95 %以上。
六、教学目标
第十一章 数的开方
1、让学生经历又一次数系的扩展过程,进一步体验数学发展源于实践,又作用于实际的辩证关系。
2、理解平方根、算术平方根、立方根等概念;认识平方与开平方、立方与开立方间的关系;会用平方、立方的概念求某些数的平方根与立方根,并用根号表示,会用计算器求一个非负数的算术平方根及任意一个数的立方根。
3、了解无理数和实数的概念,知道实数与数轴上的点一一对应。
4、能估计某些无理数的大小,培养学生的数感与估计能力,会进行简单的实数运算。
第十二章 整式的乘除
1、探索并了解正整数幂的运算法则(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),并会运用它们进行计算。
2、探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法运算。
3、会由整式的乘法推导出乘法公式,了解两个乘法公式的几何背景,并能运用公式进行简单的计算。
4、通过从幂的运算到整式的乘法,再到乘法公式的学习,了解乘法公式来源于整式乘法,又运用于整式乘法的辩证过程,并初步认识到事物发展过程中“特殊――一般――特殊”的一般规律。
5、探索并了解单项式除以单项式,多项式除以单项式的法则,并能进行简单的整式除法运算。
6、了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以互相转换的辩证思想。
7、会用提取公因式、公式法(直接用公式不超过两次)进行因式分解。
8、让学生主动参与到一些探索实践过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。
9、通过本章一些生活实例的学习,体会数学与生活的密切联系,在一定程度上了解数学的应用价值,提高数学学习兴趣。
第十三章 全等三角形
1、全等三角形主要介绍了三角形全等的性质和判定方法
2、直角三角形全等的特殊条件
3、更多的注重学生推理意识的建立和对推理过程的理解,
4、学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质5、探索三角形全等的条件。
第十四章 勾股定理
1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会用勾股定理解决相关问题。
3、掌握勾股定理的逆定理,会运用勾股定理的逆定理解决相关问题。
4、运用勾股定理及其逆定理解决简单的实际问题。
5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
第十五章 数据的收集与表示
1、数据的描述通过对实际问题的讨论,使学生体会数据的作用
2、更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息
3、本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数4、进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息
5、教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
七、课时安排
第11章 数的开方 9课时 9月1日------9月10日结束新课,11日考试
第12章 整式的乘除 28课时 9月12----10月16日结束新课,17日考试
第13章 全等三角形 22课时 10月20日---11月20日结束新课,21日考试
第14章 勾股定理 9课时 11月24日---12月3日结束新课 4日考试
第15章 数据的收集与表示 12课时 12月5日----12月19日结束新课,20日考试
平行四边形 12课时 12月22日----1月12日结束新课,13日考试
复习备考 1月14日----2月6日
一、教学目标:
1、通过实例经历立方根概念的产生过程。
2、了解立方根的概念,会用根号表示。
3、了解开立方与立方互为逆运算,会用立方运算求立方根。
二、教学的重点和难点:
重点:立方根的概念和开立方运算。
难点:例2第(2)题涉及两种开方运算的混合运算,基础较差的学生容易混淆,是本节课的难点。
三、教学过程:
㈠创设情境、引入新知
我以学生们比较熟悉的魔方引入。
提出问题:
①平常的生活中,同学们有玩过魔方吗?
②一个三阶魔方第一层有多少个立方体?
③它一共由多少个小立方体组成的?
④由8个小立方体组成的是几阶魔方你知道吗?64个小立方体?
引出立方根的定义。
㈡启发诱导、探究新知
1、立方根的定义:一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根,
2、立方根的表示方法:3
a
根指数
根号
被开方数
3、读做:三次根号
㈢勤于实践、应用新知
1、例1:求下列各数的立方根:
(1)125 (2) —27 (3) (4)— 0、064 (5) 0
师给出(1)(2)两小题的解法步骤,(3)(4)(5)小题由学生板演之后:
观察并思考:一个数的立方根的个数有几个?
一个数的立方根的符号与这个数的符号存在什么关系?
得出事实:一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根是零。
2、开立方的定义:求一个数的立方根的运算,叫做开立方
3、探究平方根与立方根的异同点
正数零负数
1 0 —1
平方根
立方根
仔细看一看,大胆说一说:
不同点: ①正数和负数的平方根与立方根的个数不同
②表示平方根和立方根的符号不同
相同点: ①0的平方根、立方根都是0
②求平方根、立方根的过程都是一种逆运算。
4、明辨是非
1。判断下列说法是否正确,并说明理由:
(1) 的立方根是
(2)算术平方根和立方根都等于本身的数只有0
(3)—8的立方根是—2,但—8没有平方根
(4) 4的平方根是±2,但4没有立方根
(5)互为相反数的两个数的立方根也互为相反数
注意:①举例时要注意特殊数:1,0,—1
②举例的数要有代表性
㈣提炼升华、巩固新知
1、帮忙纠错:
②由216个小立方体能组成几阶魔方呢?
③把一个长、宽、高分别为50cm,2cm,8cm的长方体铁块溶化后锻造成一个立方体铁块,问造成的立方体的棱长是多少cm?(损耗忽略不计)
㈤课堂小结、完善新知
我们可以提出哪些问题?
(1)它表示什么意思?
(2)计算的结果是多少?
……
㈥布置作业:
(1)课堂作业本3。3
(2)课本剩余作业题
(3)提高题
教材分析
《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第十三章《实数》第二节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础。
学情分析
在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及其唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题。
教学目标
知识与技能目标
1、了解立方根的概念,初步学会用根号表示一个数的立方根。
2、会用立方运算求一个数的立方根,了解开立方与立方互为逆运算。
3、了解立方根的性质———唯一性。
4、区分立方根与平方根的不同。
5、分清两个互为相反数的立方根的关系,即。
6、渗透特殊——一般的数学思想方法。
过程与方法目标
1、经历对立方根的.探究过程,在探究中学会解决立方根的一些基本方法和策略。
2、在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想。
3、通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识。
情感与态度目标:
1、在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神。
2、学生通过对实际问题的解决,体会数学的实用价值。
教学重点和难点
重点:立方根的概念及求法。
难点:立方根的求法,立方根与平方根的联系及区别。
教学过程
本节内容教学法为:类比法。
一、教学目标
1、了解立方根和开立方的概念;
2、会用根号表示一个数的立方根,掌握开立方运算;
3、培养学生用类比的思想求立方根的运算能力;
4、由立方与立方根的教学,渗透数学的转化思想;
5、通过立方根符号的引入体验数学的简洁美。
二、教学重点和难点
教学重点:立方根的概念与性质。
教学难点:会求某些数的立方根。
三、教学方法
启发式,讲练结合
四、教学手段
幻灯片。
五、教学过程
(一)复习提问
请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?
在同学们回答后,启发学生是否可试着给数的立方根下个定义。
1、立方根的概念:
如果一个数的立方等于a,这个数就叫做a的立方根。(也称数a的三次方根)
用数学式表示为:
若x3=a,则x叫做a的立方根,或称x叫做a的三次方根。
2、立方根的表示方法:
类似于平方根德表示方法,数a的立方根我们用符号
来表示。读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习习近平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根。练习:用根号表示下列各数的立方根:
3、开立方概念:
求一个数的立方根的运算,叫做开立方。
4、开立方运算与立方运算互为逆运算。
因此,我们可以根据立方运算来求一些数的立方根。
例1、求下列各数的立方根:
解:(1)∵(—2)3=—8,
(2)∵23=8,
(4)∵ (0。6)3=0。216,
(5)∵03=0,
下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题。由前面刚刚做过的题我们不难看出像8、0。126、103、
这样的正数,有一个正的立方根;像—8、
这样的负数有一个负的立方根;0的立方根是0。由此我们得了立方根的性质。
5、立方根的性质:
(1)正数有一个正的立方根。
(2)负数有一个负的立方根。
(3)0的立方根是0。
这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身。
(1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找“你身边的等腰三角形”。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。
(2)形象认识等腰三角形性质特点。设计“已知等腰三角形的两边长分别为5和2,求周长”,我的目的是检查学生对“三角形两边和大于第三边”知识的掌握情况及“等腰三角形有两条相等的边”的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:“等腰三角形两腰相等”。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。
(3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形“等边对等角”、“三线合一”都是由其具有轴对称性质引出的,学生得出“两个底角相等”较为容易。因为担心“三线合一”学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出“三线合一”的性质。这样做好处是降低了“三线合一”性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。
(4)运用“等边对等角”解决实际问题。
本节课从总体上看,学生基本掌握了等腰三角形“等边对等角”及“三线合一”的性质,学会了“等边对等角”的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的.同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、
第一环节:情境引入
情景1:复习提 问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现
数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
★ 正方形的教学设计