以下是小编为大家准备的最大公约数的教学设计(共含13篇),欢迎大家前来参阅。同时,但愿您也能像本文投稿人“yhnujm999”一样,积极向本站投稿分享好文章。
教学内容
苏教版《数学》第十册第四单元。
教学目标
1.理解公约数、最大公约数、互质数的意义,掌握用找约数的方法求两个数的最大公约数的方法。
2.初步学会用数学的思维方式进行观察,分析并解决一些简单的生活问题,培养数学思维能力、合作意识与实践能力。
3.经历由具体到抽象的数学化的过程,体验数学与生活的联系,感受数学的价值。
教学过程
一、创设情境
多媒体出示:植树节的那一天,五(1)班的×老师拿了12棵松树苗和30棵柏树苗准备分给班中的各个植树小组。×老师说:为了公平起见,松树苗和柏树苗每个小组都分得一样多。那么×老师可能把全班分成几组呢?最多可以分成几组呢?
(学生独立寻找答案,过一会儿学生可能有议论。)
师:你们有什么想法?
生:我用游戏棒代替松树苗和柏树苗,可怎么摆也没找到答案。
师:看来,要知道×老师把全班分成了几组,还得讲究些方法。我们可以同桌合作,分别找找12棵松树苗可以分给几组,30棵柏树苗可以分给几组。
(学生合作探究,纷纷找到了问题的答案。)
师:通过合作探究后,你们想说些什么?
教师根据学生的交流,逐步板书如下:
12棵松树苗可以分给的组数:1,2,3,4,6,12
30棵柏树苗可以分给的组数:1,2,3,5,6,10,15,30
×老师可能分成的组数:1,2,3,6
×老师最多可分成的组数:6。
二、理解概念
师:我们一起来看看这些数。先来看看松树苗这一组,这些数有什么特点?
(学生可能会说这些数能整除12或这些数都是12的约数。)
师:对,这些数都是12的约数。
(把12棵松树苗可以分给的组数改成12的约数。)
(接下来利用30棵柏树苗可以分给的组数引出30的约数。)
师:“×老师可能分成的组数”这些数与12和30有什么关系呢?
生:这些数既是12的约数,又是30的约数。
生:这些数是12和30都有的约数。
……
师:这些数,我们可以把它称为什么数呢?
(引出公约数,把×老师可能分成的组数改成12和30的公约数。)
师:6是12和30的公约数中最大的一个,我们可以把它称为――
(引出最大公约数,把×老师最多可分成的组数改成为12和30的最大公约数。)
师:今天我们一起来研究两个数的最大公约数(板书课题:最大公约数)12和30的公约数、最大公约数还可以用图来表示:
12的约数 30的约数
12和30公有的约数
师:现在,谁能用自己的话来说说什么叫公约数,什么叫最大公约数呢?
三、掌握方法
师:刚才我们认识了公约数与最大公约数,那怎样来求两个数的公约数和最大公约数呢?
(学生交流,引出用找约数的方法来求两个数的公约数和最大公约数。)
师:你们能找出2和3的公约数和它们的最大公约数吗?
(学生独立解答,指名学生交流:2和3的公约数只有1,所以2和3的最大公约数也是1。)
师:像2和3,公约数只有1的两个数,叫做互质数。如5和8它们的公约数也只有1,因此5和8是互质数。4和9呢?
师:观察这几组互质数,你们有什么发现?
(如果两个数是互质数,它们的最大公约数就是1。)
师:用找约数的方法,请你们找出6和12的公约数和它们的最大公约数。
教师根据学生的交流,逐步板书如下:
6的约数有:1,2,3,6
12的约数有:1,2,3,4,6,12
6和12的公约数有:1,2,3,6
师:请同学们仔细观察,有什么发现?
(通过观察与交流,学生发现:6的所有约数就是6和12的全部公约数,而6本身就是6和12的最大公约数,并引出如果较小的数是较大数的约数,那么它们的最大公约数就是较小的数。)
师:谁再来说说,我们可以怎样来求几个数的最大公约数呢?
(引导学生说出:第一步分别找出每个数的约数;第二步找出它们公有的约数;第三步找出最大的公约数。如果是互质数关系的,最大公约数是1;如果是约数关系的,最大公约数是较小的数。)
四、巩固练习
1.课件出示:
①找出20和30的公约数和它们的最大公约数。
②很快找出下面每组数的最大公约数,并说说是怎样找到的。
3和7 8和24 30和5
2.课件出示:小李有一张长方形彩纸,长6厘米,宽4厘米,要剪成边长是整厘米数的正方形,正好没有彩纸多余。你们知道剪成的正方形的边长最长是多少厘米吗?
五、全课总结(略。)
教学目标
(一)理解公约数,最大公约数和互质数的意义。
(二)会用排列约数的方法和集合圈的方法,找两个数的公约数和最大公约数。渗透集合思想。
(三)培养学生观察、比较、分析概括的能力。
教学重点和难点
(一)公约数、最大公约数、互质数的意义。
(二)互质数与质数的区别。
教学用具
投影片。
教学过程设计
(一)复习准备
提问:说出24的全部约数;请将24分解质因数。说一说24的约数与质因数有什么区别?(约数可以是质数也可以是合数,质因数必须是质数。)
教师:前面我们复习了找一个数的约数和把一个合数分解质因数,它们都是研究的一个数的约数,今天要研究两个数的约数。
(二)学习新课
1.公约数和最大公约数。
(1)板书例1,8和12各有哪些约数,它们公有的约数是哪几个?最大的公有的约数是多少?
学生口答教师板书:
8的约数有(1,2,4,8)。
12的约数有(1,2,3,4,6,12)。
8和12公有的约数有(1,2,4)。
8和12的最大的公有的约数有(4)。
教师:下面用集合图表示。(出示活动抽拉投影片)
(2)教师:第二幅中阴影部分表示什么?(8和12公有的约数,4是最大的。)
教师:1,2和4是8和12公有的约数,我们称它们是8和12的公约数,(板书:公约数) 4是其中最大的一个,叫做8和12的最大公约数。(板书:最大公约数。)
教师:说一说什么叫公约数?什么叫最大公约数?
学生口答后,教师针对上述概括中“两个数”提问;有时我们要找的不是两个数公有的约数,可能是三个数,四个数等,那怎么说更准确?(把“两个数”换为“几个数”。)
请学生再次口述什么是公约数和最大公约数,老师把板书补充完整:
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
教师:我们研究两个数的约数,主要研究它们的公约数,尤其是最大公约数。这节课的课题就是它。(板书课题:最大公约数。)
2.练习。
(1)口答填空:(投影片)
12的约数是( );
18的约数是( );
12和18的公约数是( );
(2)把15和18的约数、公约数分别填在下面的集合圈里,再找出它们的最大公约数。(同学们填在书上66页,请一两位同学填在投影片上、集体订正。)
3.认识互质数。
(1)教师板书:请找出下面各组数的公约数:
5和7(1) 8和9(1) 1和12(1)
9和15(1,3) 7和9(1) 16和20(1,2,4)
学生口答后老师在每组后面标出公约数。
教师:观察板书,根据公约数的情况,可以把这几组数分几类?各类的特点是什么?
学生口答,老师在公约数只有1的几组数下划上红线。并板书出:公约数只有1。
教师:(指着划上红线的几组数)公约数只有1的两个数叫做互质数。(将前面板书补充完整)如7和9就是互质数。
教师:请说一说这几组数中谁与谁互质(或谁与谁是互质数)。
教师:请举出两组互质数。
(2)请同学们讨论下面几个问题:
①任意写两个质数,看它们是不是互质数?
②任意写出两个相邻的自然数,看它们是不是互质数?
③任意写一个自然数,看它与1是不是互质数?
学生讨论后,肯定上述三种条件下得出的都是互质数。
教师:说一说你是用什么方法判定它们是互质数的?(要求说出自己的'具体例子)
教师:你们所举的例子,都采用找它们的公约数的方法来判断它们是不是互质数。在今后的学习中,经常需要判断两个数是否互质,掌握了这三种情况下一定是互质数,就可以帮助我们很快作出判断。但是要注意,互质数不止这三种情况,如7和9,所以在作判断时最根本的方法是要看这两个数的公约数是不是只有1。
(3)想一想,以前学过的质数,与今天学习的互质数有什么区别?(质数所指是一个数,它的约数只有1和本身,互质数所指是指两个数,它们的公约数只有1。)
教师在板书“互质数”的“互”字下面标出红色的符号,问:这“互”字如何理解?
学生口答后,教师再次提示,说互质数一定要说出谁与谁互质。
(三)巩固反馈
1.口答填空:(投影片)
24的约数是( );
36的约数是( );
54的约数是( );
24,36和54的公约数是( );
2.直接说出下面各组数的最大公约数。
3和4 6和24 13和39
18和1 17和19 14和15
15和30 9和10 16和18
3.说出上题中哪几组是互质数。
(四)课堂总结与课后作业
1.公约数,最大公约数,互质数。
2.作业:课本69页练习十四 1,2,3。
课堂教学设计说明
本节内容是在学生掌握了约数、质数、分解质因数等基础上进行的。公约数、最大公约数的概念,在学生通过排列约数的办法认识后,又用集合图来表示,这样既渗透了集合思想,同时又使学生加深了对公约数,最大公约数两个概念的理解。在学生掌握了这两个概念后,利用练习,引导学生进行观察分析,认识互质数的特点,采用讨论的形式,让学生自己去发现互质数中的最常见的三种情况,这样可以加深学生对互质数的理解,也提高了他们判断互质数的能力,最后安排了对容易混淆的质数与互质数进行对比区别,再次加深了对互质数概念的理解。
新课教学分三部分。
第一部分学习公约数、最大公约数的意义,共分两层。通过排列约数和集合图,理解认识公约数,最大公约数的意义;归纳两个概念。
第二部分是练习巩固新学概念。
第三部分学习互质数。分三层。认识互质数;掌握常见的三种情况;区分质数与互质数。
板书设计
今天我所教学的是《最大公约数》,是一节枯燥的数学课,这节数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,我常采用的方式是组织学生讨论。教学“最大公约数”时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:(1)、什么是约数,质数、合数?(2)、两个数的公约数与各自的约数有什么联系?(3)、怎样求两个数的最大公约数?我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的'机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?但在这节课的教学中,还没有达到自己教学目的所要求的,部分学生对学的知识没有深刻领会,心中还是糊里糊涂的,不知道什么是公约数什么是最大公约数。
另外,自己在教学中,讲解的还不是那么透彻,对所举的实例不切实际,应举更恰当的实例,这样教学效果会更好的。在一个方面,用课件上课,不能让学生更多的上黑板练习了,学生只能在下面做一做了,教师对学生的掌握情况就不能了解了,以后结合小黑板多练习些。
以后在教学中,多结合学生的实际情况,在深入新课程的理念学习,掌握更好的教学方法,为学生打下更扎实的学习基础。
教学用具
教具:小黑板,投影片。
学具:判断卡,选择卡。
教学过程设计
(一)复习准备
教师:
③求下面各题的最大公约数和最小公倍数?(口答)
8和 16 13和 26 2和 9 7和 15
教师:对上面几道题你是怎么想的?各有什么特点?你能发现什么规律?
明确:
①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1、出示例5。
学生口述教师板书。
28和42的最大公约数是:
2×7=14
28和42的最小公倍数是
2×7×2×3=84
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例5怎样做简便?(由学生完成。)
2、出示做一做。
根据下面的短除,你能很快说出24和36的.最大公约数和最小公倍数吗?
(三)巩固反馈
1、求下面各组数的最大公约数和最小公倍数。
30和18 75和35 16和72
9和31 20和12 100和30
2、判断正误并说明理由。
①互质的两个数没有最大公约数;( )
②两个数的最小公倍数,是这两个数的最大公约数的倍数;( )
③12和8的最大公约数:2×2×3×2=24,最小公倍数:2×2=4;( )
④36和24的最大公约数:2×2=4,最小公倍数:2×2×9×6=216;( )
⑤17 和51。
17和51的最大公约数是17,
最小公倍数是:17×51=867。( )
3、选择正确答案的序号填在( )里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是( ),最小公倍数是( )。
①1 ②甲 ③乙 ④甲×乙
(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是( ),最小公倍数是( )。
①2×3
②2×3×2
③2×3×5
④2×3×2×5
4、思考题。
怎样用一个短除式求下面三个数的最大公约数和最小公倍数。
8,16和 24。
(四)课堂总结(学生总结)
1、求两个数的最大公约数,最小公倍数用一个短除式。
2、求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本80页练习十六,3,4,5。
课堂教学设计说明
本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区分并深入理解求最大公约数和最小公倍数的方法。教学中在安排学生独立完成例题后,分组讨论此题求最大公约数和最小公倍数有什么异同点,由学生列表得出结论。进一步引发学生思考为什么求最大公约数是把所有除数相乘,而求最小公倍数是把所有除数和商相乘?使学生深入、透彻地理解求最大公约数和最小公倍数的方法,同时培养了学生严谨治学、独立思考的学习习惯及比较的能力。
本节新课教学分为两部分。
第一部分,教学例5,由学生独立求出最大公约数和最小公倍数。
第二部分,对比例5中最大公约数,最小公倍数的求法,讨论它们有什么异同点,从而总结出结论。共分三层。
第一层:总结相同点;
第二层:总结不同点;
第三层:结合算理找出解法不同之处的内在原因。
板书设计
教学内容:求三个数的最大公约数
教学目标:
使学生学会求三个数的最大公约数的方法,并能正确的求三个数的最大公约数
教学过程:
一、复习
1、怎样求两个数的最大公约数
2、写出18、24、36的约数和他们的最大公约数
二、教学新课
1、提出课题
怎样求出三个数的最大公约数
2、教学例3
求18、24、36的最大公约数
(18、24,36)=2×3=6
3、观察、比较、讨论
(1)求山歌书的最大公约数与两个数的最大公约数的方法相同
(2)归纳:求几个数的最大公约数,先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的公约数连乘起来。
三、巩固练习
1、试一试
求最大公约数6、12和244、7和9
2、练一练
求下面各组数的最大公约数。
15、20和2524、36和60
14、21和289、15和24
5、6和728、56和70
8、16和48105、34和30
55、22和12115、16和30
四、归纳
五、布置作业
反思:对于这类数的教学缺乏指导
1、最小的数是另两个数的约数。
2、当三个数中有两个数是互质数是,那么这三个数的最大公约数就是1。
教学内容:教材P/55―56页例1、例2、例3,完成“练一练”及P/58页练习十第1―5题。
教学要求:
1、知识与能力:使学生理解公约数、最大公约数、互质数的意义。掌握特殊的两数最大公约数的求法。
2过程与方法:利用直观教具帮助学生建立概念的表象。
3。情感与态度:培养学生的分析能力的思维能力。
教学重点:教学三种情况下求两数最大公约数的方法。
教学难点:掌握特殊的两数最大公约数的求法。
教学过程:
一、复习铺垫。
请你回忆并说说有关约数的知识。
二、教学新知。
1、教学例1。
(1)出示例1
(2)学生自己尝试完成。一人板演。
12的约数有:1、2、3、4、6、12
30的约数有:1、2、3、5、6、10、15、30
12和30的公约数有:1、2、3、6
其中最大的一个约数是:6
(3)教师用集合图表示:
12的约数30的约数
(4)请你做一回数学家,给上述12和30公有的约数及其最大的约数起一个名称。
板书;公约数最大公约数
(5)完成P/56练一练第1题。
2、教学例2。
(1)出示例2
(2)用上面学到的方法尝试。
(3)交流。
(4)把P/55的图填完整。
(5)观察、思考:你有没有发现2和3的公约数、最大公约数有什么特别?
(公约数只有1,最大公约数也是1)
到书上找一找看,象这样的两个数,叫做什么数?
你能再举一些这样的数吗?找一找它们的最大公约数。
(6)你发现了没有,如果两个数是互质数,它们的最大公约数是几?
3、教学例3。
(1)出示例7
(2)自己完成。
(3)看一看,想一想:6和12的最大公约数与6和12有什么关系?什么样的两个数它们的最大公约数才是比较小的那个数?
(4)请你举例验证。
(5)得出结论:如果较小的那个数是较大的那个数的约数,那么它们的最大公约数就是较小的那个数。
4、完成P/56“练一练”第2题。
三、课内作业。P/58练习十第1、2、3、4、5
四、课内。
五、课外作业。
求出P58练习十第2、3题中每组数的最大公约数。
教学目标
(1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。
(2)综合运用知识,进一步沟通知识间的联系。
教学重点、难点
重点、难点:能够根据不同,灵活运用简捷的方法。
教具、学具准备
教 学过程
备 注
一、基本练习
1、填空。(课本第67页第7题)
(1)9和27这两个数,能被()整数,()是()的倍数,()是()的约数。
(2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()
(3)在4、9和16中,成互质数的两个数有()和();()和()。
(4)三个素数的最小公倍数是42,这三个素数是()、()和()。
(5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。
学生先填在书上,再集体交流讨论,注意让学生说说思考方法。
2、很快说出下面每组数的最大公约数和最小公倍数。
11和49和65、10和20
16和1580和5、6和7
说的过程中注意让学生说出思考的过程及理由。
3、求下面各组数的最大公约数和最小公倍数。
80和10015、8和30
25和330、60和75
19和388、9和10
让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。
二、综合练习
1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?
整数自然数整除约数倍数
奇数偶数合数素数质因数
公约数最大公约数公倍数最小公倍数
教学过程
备 注
例2:2和8都是自然数,8能被2整除,8是2的倍数。
2、动脑筋:下面每组数中,你能找出不同类的数吗?
(1)1473。82345
(2)21216223647
(3)23792943
学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励。
3、猜一猜老师家的电话号码。
老师家的电话号码是七位数,排列如下:
最小的素数
7的最大约数
8的最小倍数
最小的自然数
最小的合数
最小的一位奇数
既不是素数也不是合数的数
三、课堂
师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?
四、作业
1、课本上第9、10题中剩余题目各选一列。
2、《作业本》
教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数
教学目标
(1)使学生初步了解公约数、最大公约数和互质数的概念。
(2)学会求几个数的公约数和最大公约数。
教学重点、难点
重点:求几个数的公约数和最大公约数
难点:判断互质数
教具、学具准备
教学过程
备注
一、复习准备
1、指名板演
18和30的约数各有哪几个?
18的约数有:
30的约数有:
2、口答:
(1)什么叫做约数?
(2)下面各数中,哪些数有约数2?哪些数有约数3?哪些数有约数5?
901117284108115
(3)说出下面每一个自然数的全部约数。
17151237
这几个自然数中哪几个是素数?为什么?(出示素数定义)
二、教学新知
1、教学新知。
出示例1(板演题上补充问题)教学。
(1)教师指出:1既是18的约数,又是30的约数,我们就说1是18和30的公有的约数。
(2)18和30公有的约数还有哪几个?(板书:18和30公有的约数有:1、2、3、6。)
(3)在这些公有的约数中最大的一个公有的约数是几?(板书:其中最大的一个公有约数是6。)
(4)出示P47图
(5)归纳:“公有的约数”简称什么数?“最大的一个公有的约数”又简称为什么数?引导学生阅读书上结语。例如:18和30的公约数有1、2、3、6;18和最大公约书是6。
2、试一试。
(1)书P47“试一试”填在书上后讲评。紧接着讨论:约数、公约数、
教学过程
备 注
最大的公约数有什么区别?
(2)18和42这一组数里有没有公约数?2有没有公约数3?有没有公约数5?你是怎么想的?(根据能被2、3、5、整除的数的特点来判断。)
(3)口答P49第3题。
3、出示例2教学。
(1)指一名学生板演,其它填在书上表格当中。
(2)这几组数的公约数有什么特点?
(3):公约数只有1的两个数,叫做互质数。(出示定义)例如,互质的两个数有四种情况。边讲边板书:
①两个数都是素数。如5和11;
②两个数都是合数。如9和16;
③一个合数,一个素数。如30和29;
④1和另一个自然数。如1和8。
4、练习、判断:
(1)指出下面哪一组中的两个数是互质数。哪一组中的两个数不是互质数。为什么?
8和927和151和72和1513和54和24
(2)判断。正确的打√,错误的打X。
①所有自然数的公约数是1。()
②如果两个数是互质数,那末这两个数必定是互质数。()
③如果两个数都是素数,那么这两个数必定是互质数。()
④相邻的两个自然数都是互质数。
⑤两个自然数中有一个数是1,这两个必然是互质数。()
以上判断正误,要求说出理由。
(3)讨论:从以上的练习,可以知道,怎样判断两个数是不是互质数?
三、巩固练习
P。48第1题、P49第2、6题。
四、教学
这节课,我们学习了什么,什么叫做公约数、最大公约数和互质数?
求两个数或三个数的最大公约数,除刚才学过的方法以外,还有一种简便的方法,下节课再学。
五、作业《作业本》
从约数着手,层层深入,得出公约数和最大公约数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。从公约数的个数上,引出互质数概念,并引导学生经过探索,得出互质数的组成方式。
课后反思:教学“求最大公约数”,课本共安排了三个例题及一个“做一做”,教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:“两个数的最大公约数也就是这两个数的差。”教师问:“有什么根据?”学生回答说:首先肯定了学生善于观察和思考的,接着又向学生指出:“是巧合呢,还是真有这样的规律存在呢?”学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。
《最大公约数最小公倍数》教学反思
《最大公约数最小公倍数》反思自己的教学,我有下列的体会:课堂教学是一个动态的不断发展推进的过程。这个过程既有规律可循,又有灵活的生成性和不可预测性。只有通过课堂生成资源的适度开发和有效利用,才能促进预设教育目标的高效率完成或新的更高价值目标的生成。
这堂课学生在找“公倍数”和“最小公倍数”的方法时出现的新的发现就为我提供了一个宝贵的课堂再生资源,我充分的利用了这份宝贵的资源,让学生在兴趣最高涨时有了很了不起的'发现。不过回想起来在我的平时教学中其实还有很多这样的机会,当时没有敏锐的捕捉到加以利用,是多么可惜的一件事。所以教师应该正视课堂教学中突发的每一件事,善加捕捉与利用。
学生不是一个容器,而是一支需要点燃的火把。我们只要珍惜课堂生成资源,用好课堂生成资源,就能创建富有生命活力的新课堂教学,并在创建过程中提升师生在课堂教学中教与学的质量。