下面小编给大家整理了六年级数学教案:乘除法的意义及关系(共含13篇),供大家阅读参考。同时,但愿您也能像本文投稿人“不是粉丝”一样,积极向本站投稿分享好文章。
六年级数学教案:乘除法的意义及关系
教学目标:
1、理解乘除法的意义,知道除法是乘法的逆运算。
2、掌握乘法各部分之间的关系,会求乘法算式中的未知数。
3、能根据知识的迁移,找出乘除法之间的关系,从而培养学生知识间的迁移能力和逻辑思维能力。
教学重点:理解乘除法的意义。
教学难点:理解乘除法的关系。
教学过程:
一、创设情境 :
1、师:同学们,今天我给你们上可课,你们都认识我吗?(生答)我来介绍一下,我姓吴,所以你们就叫我-吴老师。就现在而言,我是你的老师,你是我的学生。我们是怎样的关系呢?
2、师:今天吴老师给你们上课,高兴吗?(生:高兴)现在我要看看那一小组的同学坐得最好,好的奖励1小组3个五角星。(教师奖励五角星)。今天啊,我们的同学表现真好!
3、师:现在请同学们回忆一下,把刚才老师提供给你的一些信息和数据,能编成应用题吗?
生:“吴老师要奖励四年级的同学,每组奖励3个五角星,奖励4组,一共要奖励多少个五角星?
师:算式怎样列啊?
生:乘法算:3×4=12(个)
师:假如用加法算那就是:3+3+3+3=12(个)
师:刚才几个相同加数,用什么方法比较简便。
小结:求几个相同加数的和的简便运算,叫做乘法。
以后遇到求几个相同加数的和的计算,我们就用乘法来计算。
比如说:老师现在要练习写粉笔字,写了“吴”,“吴”,“吴”,“吴”再写一个“吴”,刚才写了几个(生:5个),一共写了几画?用什么方法计算比较简便呢?齐读意义
二、教学除法
1、师:我们再来看这道题,谁能把它改编成一道除法应用题。算式是什么?
生:12÷3=4(组)
生:12÷4=3(个)
板书三种算式,说说每个算式所表示的.意思。
2、观察算式,找出他们之间的关系。
师:那这三个算式之间有什么关系吗?有怎样的关系?你从中发现了什么?
把你的发现告诉同桌,也可以四人小组讨论。
师:讨论的怎么样了?哪组愿意把你们的意见向全班同学汇报一下。
①、反馈讨论意见。
比如:编一编老师写“吴”的 应用题。
师:像这样的例子还有吗,举例几个
②、板书:几个例子。板书 因数×因数=积,
③、寻找乘除法之间的关系。
师:通过大量的举例你发现了什么?
④板书各部分关系
师:通过大量的例子证明乘除法之间存在着这样的关系,乘法算式中的积相当于除法算式中的被除数,乘法算式中的两个因数相当于除法算式中的除数和商。所以说除法是乘法的逆运算。
板书:除法是乘法的逆运算
三、理解乘法、除法的意义
1、理解乘法的意义
师:从他们的关系我们可以发现,乘法是求两个因数相乘积的运算。
4、理解除法的意义
(1)、提问:根据乘除法之间的关系,同学们想一想,除法实质上就是求什么呢?(这个商相对于乘法来说他是什么?)
(2)、那怎么求这个因数呢?引出:一个因数=积÷另一个因数
(3)、揭示除法的意义:那么,到底什么是除法?
板书定义,齐读
四、揭示乘除法的关系
教师:除法是已知两个因数的积和其中一个因数,求另一个因数,所以说除法是乘法的逆运算。
板书:除法是乘法的逆运算
五、揭题:今天这节课我们学习的就是乘除法的意义及关系。(出示课题)
六、应用乘法的各部分关系解决问题:
师:一个因数=积÷另一个因数,那同学们想想,我们在哪些地方已经应用到乘法的这种关系了?(可以填些数、乘法验算、求乘法算式中的未知数)
(1、 填空,你能举个例子吗?说的是不是和我一样的类型,你能根据上面的题目填一填吗?
2、还在哪里应用过了,引出验算。
3、还可以解决什么问题?若出来则让学生举例,若不出来则说:这个括号里的数是要我们求的,是一个未知数,所以我们除了用括号表示外,还可以用什么来表示呢?引出求未知数X)
七、巩固练习
(一) 填空
72÷8=9 2、。22881÷263=87
8×=72 87×263=( )
()÷9=8 22881÷87=( )
1)说说填写的依据
(2)第3小题中 a 、b 、c 可代表哪些数?
强调不可为0,因为0不能作除数。
(二) 计算并验算
28×57 69×44 53×39
三题中挑一题,可以让学生说说你是怎样验算的,验算的依据是什么?
(三)求未知数
师:应用乘法的各部分关系可以求未知数,那么,这题的未知数是多少?怎样求呢?
出示:X×26=468
(1)、放手让学生自己先求
(2)、说说你是怎样求的?为什么这样求?应注意什么?
(3)、为了使写起来方便,看起来清楚,可以把X×26省略乘号,写成26X。
(4)集体训练:35X=840 18X=810(指名板演)
八、总结
这节课我们学习了什么内容?你有何收获?
分数连除和乘除混合六年级数学教案
教学内容:
教材第63页的例6及相应的“试一试”、“练一练”,练习十二第9~12题
教学目标:
1、结合生活中具体的情景使学生经历探索分数乘除混合运算的计算方法的过程。
2、能正确解答分数连除或分数乘除混合运算的试题。
3、鼓励学生用多种方法探究解决问题的策略,进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯,获得一些成功的'体验,增强学好数学的信心。
教学资源:
挂图,小黑板
教学过程:
一、复习引入
上节课我们学习了用方程解答简单的分数除法应用题,这节课我们学习分数连除和乘除混合运算。(揭示课题)
二、教学例6
1.出示例6中的三个条件,引导理解题目意思。
(1)读题理解题目意思。
(2)从题目中我们可以知道哪些信息?这些信息之间有什么关系?通过信息的组合,我们又可以获得什么新的信息?
2.讨论解决问题的策略。
讨论练习十二第10~11题中的数量关系。
(1)画出各题中的关键句。
(2)说说每题中关键句中的分数是什么意思,并说出数量关系式。
(3)完成练习十二第12题。
各自练习后,将计算的结果填在书上。
三、交流:你是分别根据什么计算出各个洲的面积的?
四、作业:练习十二第9、10、11题。
教学后记:
关于二年级数学乘除法意义的对比练习题
二、填空。
例题:
把8个平均分成2份,每份4个。
算式:(8÷2=4)
1、把12个,平均分成3份,每份4个。
________________________________________________算式:
2、把12个,每份4个,可以分成3份。
__________________________________________算式:()
你的发现:___________________________________
三、计算。
(1)把()个桃子,平均分给3只猴子,每只猴子可以分到()个。
()÷()=()
(2)把()个桃子,每只猴子分8个,可以分给()只猴子。
()÷()=()
(3)把()个桃子,平均分给8只猴子,每只猴子可以分到()个。
()÷()=()
(4)把()个桃子,每只猴子分3个,可以分给()只猴子。
()÷()=()
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的'共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学过程:
课前三分钟交流
讲故事《大胆的小猴》,并与大家交流,对学生进行自信、勇敢的培养。
设计意图:课前三分钟交流是孩子们展示的舞台,在这短短的三分钟时间里带给自己快乐、自由和成长。这个环节是师生的最爱。学生自信的主持,精彩的展示,内容的丰富,真可谓色、香、味俱全的大餐。学生展示的内容丰富,可以是数学古诗、数学家的故事、数学要闻、数学成语、数学符号的由来等等形式多样。真是万紫千红,各有千秋。
小组交流、探究、合作学习
一、展示课前收集的生活中的百分数。
设计意图:小学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。数学学习内容远离生活无疑是导致学生对数学没有兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉。有鉴于此,数学的教与学应该联系生活,注重现实体验,变传统的“ 书本中学数学”为“生活中做数学”,体现以解决问题为中心的生本教育理念。
二、小组交流百分数的意义。
百分数表示一个数是另一个数的百分之几。是一个量与另一个量的比较。两个量比较才能产生百分数,只有一个数量是不能产生百分数的。百分数表示的是两个数比较的结果,所以也叫百分率或百分比。
设计意图:尊重学生的主体足够自主的空间、足够活动的机会的教学,让学生自探明之,自求得之,倡导合作学习、探究学习的教学,才能有效地增进学生的发展,创建一种开放的、浸润的、积极互动的课堂文化。
三、小组交流百分数的读法和写法。
读百分数时注意要读成百分之几,不能读成一百分之几。写百分数时,通常先写分子,再写百分号,并注意%的两个小圆圈要均匀且不能过大,以免和分子混淆。
在半分钟内写十个百分数,看看写出的百分数占总数的百分之几,并用自己喜欢的一个百分数说一句话。
设计意图:通过小组交流并展示生活中找到的百分数的读法和写法,又加深理解了百分数的意义。
四、小组交流百分数与分数的区别。
(1)意义不同
分数代表一个数值,也可以代表一个分率。而百分数只能代表一个分率。
(2)读法不同
分数读作几分之几,百分数读成百分之几,不能读成一百分之几。
(3)写法不同,百分数在分子后面加上百分号就行了,而不是写成分数的形式。
(4)分母不同
分数的分母可以是任何一个大于0的自然数。而百分数的分母规定是100.
(5)分子不同
分数的分子必须是自然数。百分数的分子可以是小数,整数,可以大于100,可以小于100.
(6)百分数不可以约分,分数可以约分。
(7)分数单位不同,分数的单位是几分之一,而百分数的单位只能是百分之一
设计意图:百分数源于分数,而又有别于分数。实践证明,学生认识这一点非常困难,这是长期学习的种属概念负迁移所致。学生会误认为分数与百分数是包含关系,分数有的属性,百分数也一定具有。为了跨越这一认识上的误区,我采用了小组探究交流的方式进行学习,使学生区分清楚百分数和分数是不一样的。
五、生活中的应用
1、经典文化中的百分数。
百发百中——100% 百里挑一——1%
2、做游戏。
石头 剪刀 布
规则:两人十次,想一想,你赢了对方几次?赢的次数占总次数的百分之几?
设计意图:学生通过找成语中的百分数和做游戏,已能找出生活中的百分数,并能将百分数应用到平时玩的游戏中。所以此环节承上启下,意在让学生意识到生活离不开数学,数学是有用的,既有利于培养学生的数学意识,又体现“学生活中的数学、学有用的数学”,符合生本教育的理念,在生活中找例子。
生本教育数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;所以一节数学课,练习是否有效,将是一节课的点睛之笔。所以课堂练习要设计有挑战性习题,可以通过游戏、猜谜、闯关练习等形式,吸引学生的无意注意,当学生沉迷在问题的情境之中时,他们的无意注意就会转化为有意注意并趋于主导地位,从而达到主动探究的目的。
六、总结
请告诉大家你这节课学习情绪的比率。
愉快占( )%
紧张占( )%
遗憾占( )%
教学目标:
1、使学生认识百分数,知道百分数在生产、生活中的广泛应用。
2、使学生理解百分数的意义,能正确熟练读、写百分数。
3、培养学生的比较、分析、综合能力和应用意识。
教学重、难点:
百分数的意义
教学方法:
引导-----自学
预习提示;
(1)找一找生活中的百分数。
(2)什么是百分数?
(3)羊毛含量36%是什么意思?
(4)怎样求一个数是另一个数的百分之几。
教学过程:
一、创设情境
让学生把事先找到的生活中的百分数带入课堂。
请同学们拿出在生活中找到的实际应用的百分数,并说一说是在哪儿找到的。
学生交流。
在生产、生活和工作中,人们经常要用到百分数,百分数有什么好处?什么叫百分数呢?今天我们一起来研究百分数。
二、引导探究,揭示百分数的特征
(一)出示课本例
1、一条裙子,羊毛的含量为36%,对此进行分析,并完成下表。
一条裙子,羊毛的含量为36%.
这个句子中,单位“1”的量是:
这个百分数是( )和( )比较的结果.
这个百分数表示的意义是:
看到这个句子,你能想到什么?
这个36%的分母100表示什么?分子36又表示什么?
学生在小组内学习,每位学生在小组内汇报学习情况。
学生活动,教师参与。
什么叫做百分数?我们学过分数,分数既可以表示一个数是另一个数的几分之几,也可以表示一个具体的数量.那百分数呢?
学生通过探究得出:百分数是表示一个数是另一个数百分之几的数,百分数表示两个数的一种倍数关系,百分数又叫做百分率或百分比.
(二)小组合作学习,比较百分数与分数的不同。
接下来我们就比较一下百分数和分数,到底有那些不同?
通过合作学习使学生明白:百分数和分数的写法不同,为了区别与分数和便于书写,百分数通常不写成分数形式,而是采用%来表示。
在这个过程中渗透百分数的写法以及读法。并进行随机练习。
通过比较还要使学生明白;
①百分数可以不是最简分数,如:52%、38%,分子和分母不用约分,而分数就不一样了。
②百分数的分子可以是小数,如:3.1%。也可能分子比分母大,如:120%,和分数不同。
(三)学习求一个数是另一个数的百分之几,揭示百分数的意义。
出示例1。学生独立完成在小组内交流。
三、学生反思学习过程
回顾刚才的学习过程,说一说,你有什么收获?
四、多层练习,巩固深化
1、出百分数,并回答问题。
1% 18% 50% 89% 100% 125% 7.5% 0.05% 300%
① 谁是最小的百分数?在这组内还有比它小的吗?
② 谁是的百分数?
③ 请读出跟一半的意思一样的那一个百分数。
④ 300% 是什么意思?
⑤ 在这组百分数中,我们可以看到,百分数的分子有的是小数,有的是整数,有的大于分母,有的小于分母,这是为什么呢?
2、读出下面的句子,并回答老师提出的问题。
(1) 我国的耕地面积约占世界的7%。
(2) 我国的人口约占世界的22%。
提问:这两句话中的百分数表示谁与谁比?
看到这两句话,你想到什么?
及时对学生进行思想教育。
3、三峡库区分重庆库段和湖北库段。重庆库段的面积占三峡库区面积的85%,湖北库段的面积占三峡库区面积的百分之几?
完成课本练习一的相关习题。
教科书第6162页,练习十七第14题
本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。
这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关。
正确理解比的意义。
1、通过实物及学过的关系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。
2、举例说明比值的求法,以以及比和除法的联系。
;常分米,款分米的红旗一面,投影仪一、复习引入。
1、出示红旗。
讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?
引导学生回答:
要表示红旗的长和宽的关系,可以求长是宽的几倍,或者宽是长的几分之几。
板书;32=3/2长是宽地3/2。
23=2/3宽是长到2/3。
二、探究新知。
1、导入新课。
导语:(教师自备)
板书:比
2、教学比难道意义。
1、)红旗长和宽的关系,也可以这样说:
长和宽的比是2 比3,
宽和长的比是2比3 。
2、)出示投影片:
一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?
求汽车路程和时间的比是:100比2。
3、)学生讨论比的意义。
4、)教师小结:两个数相除又叫做两个数的比。
3、教学比的读写法,各部分的名称及求比值的方法。
1、)比的写法:3比2 记作3 :2。
2比3 记作2 :3。
100比2 记作 100 :2。
2、)比的读法。
3、)比的各部分的名称:
3 :2 =32 = 3/2
| || |
前项 比号 后项 比值
4、)比值;
比的前项除以后项所得的商,叫做比值。
说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。
比的后项不能0。
4、做教科书第62页上半部分的做一做的题目。
5、教学比与除法、分数的关系。
6、做教科书第61页下半部分的做一做的题目。
三、巩固练习:
1、做练习十七的第1题。
2、做练习十七的第2、3题。
四、课堂小结:
同学们,这节课我们学到了什么知识?如何求比值?
[小学六年级数学教案――比的意义]
教材分析
除法是与乘法相反的运算.在前三年半学生经过大量的整数除法计算和应用题的练习,对除法的意义已有了一定的感性认识,这里在已学的基础上对除法的意义及乘、除法各部分间的关系加以概括,使学生有更明确的认识.另外教材以前研究的是商是整数而没有余数的除法,虽然学生在以前的学习中也曾接触过有余数的除法,但是学生没有从字面上真正理解它的含义,所以本小节教材是在学生原有的基础上对有余数除法的概念及关系式明确地概括说明.
本小节的教学重点是使学生掌握乘、除法及有余数除法各部分间的关系,并对它们进行验算.学习这些知识的同时,也是为进一步学习解简易方程打基础的。那么教学难点 又主要体现在两方面:一方面是学生对理解整除概念时,对整除算式中,哪个数能被哪个数整除的几种不同叙述分不清,容易混淆.另一方面是使学生理解余数为什么比除数小.
教法建议
1、运用知识的迁移进行教学.在教学中,教师要以学生原有的知识为基础,把旧知与新知联系在一起.再结合具体的实例进行教学.例如,在教学乘法的意义时就可以通过学生学过的一道乘法应用题引出,充分让学生思考,并观察、分析、比较由乘法算式转换成除法算式所发生的变化,最后再通过学生的讨论(小组、同桌、集体)、互相交流,让学生用自己的话总结出除法的意义.从而提高学生的语言表述能力.讲解有余数的除法时,也可以采用以上的教学方法.
2、注意概念的.归纳与概括.在教学有余数除法概念时,可以通过与整除对比的方法,让学生自己从中发现问题,并从发现中归纳总结出什么叫做“有余数的除法.”这样可以让学生从感性认识上升到理性认识,也可以避免学生死记硬背的现象.
3、在教学中,充分发挥学生的主体作用,借用各种教学手段来调动学生的积极性,使学生参与知识形成的全过程.通过学生的想一想、看一看、说一说、做一做悟出知识的真谛,以求得其思维的发展,能力的培养,体验成功后的喜悦.
教学目标
1.使学生理解除法的意义,理解除法是乘法的逆运算,并会在实际中应用.
2.使学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算.
3.在分析过程中,培养学生的推理、概括能力.
4.培养学生养成良好的验算习惯.
教学重点
使学生掌握乘、除法各部分间的关系,并对乘、除法进行验算.
教学难点
理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答.
教学步骤
(一) 铺垫孕伏
1.口算: 7×5= 9×6= ( )× 4=32
35÷5= 54÷6= 32÷( )=8
35÷7= 54÷9= ( )÷4=8
2.导入 :我们已经做过大量的整数除法计算和应用题的练习,对于除法知识也有了初步的了解.这里我们要在原有的知识基础上,对除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:除法的意义)
演示课件“除法的意义”出示课题 下载
(二)探求新知
1.教学除法的意义.
(1)出示一组题,学生独立列式解答.演示课件“除法的意义”出示例题 下载
①四年级有4个班,每班40人,一共有多少人?
②四年级有160人,平均分成4个班,每班多少人?
③四年级有160人,每40人分一班,可分成几个班?
根据学生的回答板书:
教师提问:观察,比较上面的3道题,为什么列式和计算方法都不同?
40,4和160在三个题中分别叫做什么数?
第②、③题分别是已知什么?求什么、怎样算?
(第②、③题分别是已知两个数的积和其中的一个因数,求另一个因数,用除法计算.)
分组讨论:根据上面除法算式和乘法算式的联系看,除法是一种什么样的运算呢?
演示课件“除法的意义”出示问题(启发学生用自己的语言概括除法的意义.) 下载
教师归纳:已知两个因数的积和其中的一个因数,求另一个因数的运算,叫做除法.
(2)教学除法各部分的名称.继续演示课件“除法的意义” 下载
教师提问:在除法中已知的积叫做什么?(被除数)
已知的因数叫做什么?(除数)
求出的未知因数叫做什么?(商) (教师板书)
(3)教学除法是乘法的逆运算.
引导学生观察:第②、③与①的已知条件和问题有什么变化?
使学生明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算.
反馈:做68页的“做一做”
根据36×14=504直接写出下面两道题的得数.
504÷14=□ 504÷36=□
(4)教学关于0和1在除法中的特性.继续演示课件“除法的意义” 下载
①启发同学想:一个数除以1得什么数?
学生自己举例
引导学生得出:一个数除以1,还得原数.
②启发同学想: 0除以一个不是0的数得什么数?
引导学生自己举例
老师提问:为什么相除的结果都是0?
教师强调:因为一个数和0相乘才得0,所以0除以一个不是0的数商都是0.
③学生讨论: 0能作除数吗?为什么?
教师说明:如5÷0不可能得到商,因为找不到一个数同0相乘得5.0÷0不可能得到个确定的商,因为任何数同0相乘都得0.
2.教学乘除法各部分间的关系及其应用.演示课件“除法的意义”出示口算题 下载
(1)口算:
①4×5 ②320÷8
20÷4 320÷40
20÷5 40×8
(2)引导学生根据上面第①组算式总结乘法各部分间的关系.继续演示课件 下载
教师概括: 积=因数×因数
一个因数=积÷另一个因数.(板书)
引导学生观察第②组算式,自己总结出除法各部分间的关系.
教师板书: 商=被除数÷除数
除数=被除数÷商
被除数=商×除数
(3)教学乘法验算
教师出示:32×27=864,让学生用以下两种方法验算.
验算:
或
教师提问:以上两种算式应用了什么方法验算的?为什么?
教师总结:过去我们验算乘法时,用交换两个因数的位置,再乘一遍的方法.今天我们根据乘法各部分间的关系,可以用算出的积除以一个因数,看是不是等于另一个因数.
(4)教学除法验算
教师出示:2871÷33=87,让学生用以下两种方法验算.
教师提问:以上两种算式应用了什么方法验算的?为什么?
教师总结:应用除法各部分间关系,可以验算除法.以前学过的用乘法验算除法,就是应用被除数=商×除数,现在应用“除数=被除数÷商”也可以验算除法,也就是用除法验算除法.
3.反馈:
试算第69页的“做一做”,并说出根据.
计算下面各题,然后用两种方法验算.
102×85 1794÷69
(三)巩固练习
1、练习十五第1题.(讨论、口答)
应用除法的意义说明下面各题为什么用除法算.
(1)水果店运来20筐苹果,共500千克.平均每筐苹果有多少千克?
(2)光明小学图书室有2400本图书.图书的本数正好是学生人数的4倍.光明小学有多少学生?
2、练习十五第3,4两题.(做在本上)
练习十五第3题.
把3060÷85=36,改写成一道乘法算式和一道除法算式.
练习十五第4题.
根据8610÷35=246,直接写出下面两道题的得数.
246×35= 8610÷246=
(四)全课小结:
总结性提问:
(1)你今天学习了什么?
(2)除法的意义是什么?
(3)乘、除法中各部分间的关系是什么?
(4)乘、除法的两种验算方法各是什么?
(5)0能作除数吗?为什么?
(五)作业
练习十五第2,5,6题.
2题、(1)一本书有95页,每页按624个安计算,这本书一共有多少个字?
(2)把上题改编成两道除法应用题.
5题、计算下面各题,并各用两种方法验算.
(1)325×24 (2)4890÷15
6题、 7952÷71 1634÷19 3000÷120
2943÷27 5625÷25 2052÷38
板书设计
六年级数学教案:方程的意义和解简易方程
教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。
教学要求:
1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。
2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。
教 具:
教学天平、小黑板。
学 具:
自制的简易天平、定量方块。
教学步骤:
一、复习
1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。
(1)一个加数=( )○( )
(2)被减数=( )○( )
(3)减数=( )○( )
(4)一个因数=( )○( )
(5)被除数=( )○( )
(6)除数=( )○( )
2.求未知数X(并说说求下面各题X的依据)。
(1)20十X=100 (2)3X=69
(3)17X=0.6 (4)x5=1.5
二、新授
1.理解和掌握方程的意义。
(1)出示天平,介绍使用方法(演示)后,设问:
在天平两边放物体,在什么情况下才能使天平保持平衡?
(两边的物体同样重时,天平才能保持平衡。)
(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?
板书:20十30=50
指出:表示左右两边相等的式子叫等式。
(并板书)等式:表示等号两边两个式子的`相等关系,即等式是表示相等关系的式子。
(3)教学例2(课本105页)。
①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?
板书:20+?=100
②等式20+?=100中的?是未知数,通常我们用X来表示,那么上面的等式可写成 (板书)20十X=100
③比较:等式20+X=100与等式20+30=50有什么不同?(含有未知数)教师指出,20+X=100是含有未知数的等式。
④想一想:X等于多少,才能使等式20+X=100左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)
(4)教学例3(课本106页)。
出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:
①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)
②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?
(板书)3X=234
③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)
(5)方程的意义:
综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:
20+30=50一般的等式
20+X=200 含有未知数的等式
3X=234 称之为方程
(板书)像20+x=100 3X=234 X10=35 X12=5等,含有未知数的等式叫做方程。
①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)
②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。)
(6)练一练(指名学生判断,并说明理由)教材第106页做一做。
2.学习解简易方程。
(i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?
(板书)使方程左右两边相等的未知数的值,叫做方程的解。
例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。
(板书)求方程的解的过程叫做解方程。
②方程的解和解方程有什么联系和区别?
方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。
(2)教学例1:
解方程X一8=16
①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。
②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)
(板书)解方程X一8=16
解::根据被减数等于减数加差;
X=16十8(与原来学过的求X的思路相同)
X=24
检验:把X=24代人原方程
左边=24一8=16,右边=16
左边=右边
所以X=24是原方程的解。
总结有关的格式要求:
①做题时要先写上解字。
②各行的等号要对齐,并且不能连等。
③方框里的运算根据可以不写。
④验算以检验的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。
指导学生看教材第105一107页。
三、巩固
1.教材107页做一做。
2,教材第108页练习二十六第1、2题。
四、练习
教材第108页,练习二十六第3~5题。
作业辅导
小学六年级数学教案:加法和减法之间的意义
教学内容:p86,加法和减法之间的关系。
教学目的:1、理解加法,减法的意义。
2、使学生明确加,减法之间的关系,进而使学生知道减法是加法的逆运算。
3、学习了加地各部分间的关系可以利用这一关系验算加法。
4、培养学生概括能力。
教学重点:理解加法,减法的意义。
明确加、减法之间的关系。
教学难点:理解减法是加法的逆运算。
教学过程:
准备训练。
说出算式各部分名称。
40 + 30 = 70
( ) ( ) ( )
- 40 = 30
( ) ( ) ( )
新授。
出示课题加法和减法之间的关系
出示例1
(1)
先让学生说出每幅线段图的表示的意思,列出算式
40+30=70
引导学生说出这是和与加数=关系。
在算式下面写出加数+加数=和。
从而引出加法的意义;
说清图意,列式。
引导学生把(2),(3)与(1)比较。
谁是已知的,谁是未知的,已知,未知有什么变化。明确第(2)题是求第二加数,
第(3)题是求第一加数。
从中引导减法的意义。
引导学生看书,理解减法是加法的逆运算
着重引导学生想,为什么减法是加法的逆运算。
将加法算式及各部分名称与减法算式各部分名称加以比较。
得出:一个加数=和一另一个加数
师:学习了加法各部分间的关系可以利用这一关系验算加法。
试做:验算 743+257=1000,对不对?
出示例2
求□中的未知数
□+6=13 根据一个加数等于和减另一个加数由生填,讲清怎样想的?就可以求出□中的.数。
再完成
478+522=1000
1000-478=522
生完成后,回答怎样想的。
三、小结:
什么叫加法?什么叫减法?
加法之间有怎样的关系?
运用这一关系可以验算加法。
四、巩固练习
根据加,减法的关系,在下面算式的□里填数。
(1) 237+69=306 (2)5002-3875=1127
306-□ =237 3875+□=1127
□-237=69 □-1127=3875
求□中的未知数
□+378=1082 4657+□=7102
□+265=930 1896+□=3024
□+489=814 2743+□=5000
坚式计算,并验算。
3748+627 9134-514
课后作业:
1.根据560+430=990,写出两道减法算式。
□-□=□
□-□=□
2.根据500-240=260,写出一道加法算式和一道减法算式。
□+□=□
□-□=□
3.求□中的未知数
589+□=1062 □+495=702
298+□=594 □+324=500
课题一:减法的意义和加减法各部分间的关系
教学内容:教科书第53―54页上面的内容,练习十二的第1―6题。
教学目的:
1.使学生在已学过的减法知识的基础上,概括出减法的意义,减法的认识从感性上升到理性。
2.使学生理解并掌握加减法之间的关系。
教学重点:减法的意义
教学难点 :加减法之间的关系
教具准备:小黑板
教学过程 :
一、教学减法的意义
1.减法的意义
教师:我们在前三年已经学过减法的计算方法,现在来学习一些有关减法的规律性知识,首先学会减法的意义。
教师出示第53页上面的题:
(1)一班有男生24人,女生有19人。24+19=43(人)
全班共有多少人? 加数 + 加数 = 和
(2)一班有43人,其中男生24人,43 + 24 =19(人)
女生有多少人? 和 - 加数 =加数
(3)一班有43人,其中女生19人。43 -19 = 2 4(人)
男生有多少人? 和 - 加数 = 加数
先做第(1)题,让学生自己分析数量关系,进行解答,然后提问:
“这道题为什么用加法计算?”
“谁能说出加法算式中各部分的名称?”
学生回答后,教师在第(1)题的右边板书出加法算式,并在算式下面写出“加数”、“加数”、“和”(如右上)。
接着学生解答第(2)、(3)题,然后回答:
“与第(1)题比较,第(2)、(3)题是已知什么,求什么?”
“用什么方法计算?”
引导学生说出第(1)题是已知男生和女生人数,求全班人数用加法,第(2)、(3)题是已知全班学生人数和男生或女生人数,反过来求女生或男生人数,都用减法计算。教师板书出第(2)、(3)题的减法算式(如右上)。
然后教师提问:
“如果撇开题里讲的具体的事,每道题各是已知什么,求什么?”
启发学生说出:第(1)题是已知两个加数,求它们的和,用加法;第(2)、(3)题都是已知和与其中一个加数,求另一个加数,用减法。
学生回答后,教师在第(2)、(3)题的算式下面注出“和”、“加数”、“加数”(如右上。)然后启发学生想:
根据第(2)、(3)题的算式与第(1)题的算式的联系,你能说一说减法是什么样的运算吗?”
学生回答后,教师进行总结:减法是已知两个数的和与其中的一个加数,求另一个加数的运算。
让学生看书上第54页,读一读书的结语。然后提问:
“在减去的已知数叫做什么?”(被减数。)
“要减去的已知加数叫做什么?”(减数。)
“要求的末知加数叫做什么?”(差。)
教师说明:在减法,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知加数叫做差。减法是加法的逆运算。“逆”就是相反的意思,“逆运算”就是相反的运算。我们可以通过上面的例子来理解。第(1)题用加法计算,第(2)、(3)题都用减法计算,第(2)、(3)题与第(1)题比较,第(1)题的问题在第(2)、(3)题中变成了已知条件,第(1)题中的其中一个已知条件在第(2)、(3)题中变成问题。也就是说,减法中的已知条件和问题与加法中的已知条件和问题正好相反,在加法中已知的,在减法中变成了未知的,在加法中未知的,在减法中变成了已知的。所以减法是与加法相反的运算,通常叫做“逆运算”。
2.练习
(1)做第54页上的“做一做”。
要让学生根据减法的意义说明各题的得数是怎么得来的。发现问题及时纠正。
(2)做练习十二的第1题。
要让学生应用减法的意义说明各题为什么用减法计算。在语言的叙述上,尽量紧扣减法的意义,逐步培养学生运用概念说理的能力。如第(1)题,可以启发学生说出:因为已知小明和小绅的邮票张数的和,又知道小明的邮票张数,要求小强的邮票张数,就是已知和(小明和小强的邮票张数的和)与一个加数(小明的邮票张数),求另一个加数(小绅的邮票张数),所以用减法法算。
二、教学0在减法中的特性
提问:
“在加法中关于0的运算有几种情况?”(两种)
“谁能举例说明?”(7+0=7,0+0=0。)
“根据减法是加法的逆运算,那么减法中关于0的运算有哪几种情况?”
引导学生写出下面三种情况:
7―0=7,7―7=0,0―0=0
然后引导学生归纳:
“我们先来看第一种情况:7―0=7,那么8―0等于几?9―0呢?任意一个数减去0得多少?用一句话说就是……。”
“再来看第二、三种情况:7―7=0,0―0=0,任意一个数减去它自己等于多少?也就是当被减数时,差怎样?”
最后,概括成两条:
1.一个减法去0,还得原数;
2.被减数等于减数、差是0。
三、教学加、减法各部分间的关系
2. 加法各部分间的关系。
提问:
“我们已经学过加、减法各部分间的.关系,你们还记得吗?”
“谁能说出加法各部分间的最基本的关系是什么?”
“知道和与其中一个加数,如何求另一个加数?”
随着学生的回答,教师板书出加法各部分间的关系:
2.减法各部分间的关系。
提问:
减法中各部分间的最基本关系是什么?
知道被减数和减数,怎样求差?
知道被减数和差,怎样求减数?
知道减数和差,怎样求被减数?
学生边回答教师边进行归纳,整理出下面的关系式:
3.完成练习十二的第2、3题。
这两道题,既可以根据减法各部分间的关系说明,也可以用减法的意义说明。例如,第2题,根据2100690=1405写出一道加法算式和一道减法算式。既可以把2100、695、1405分别看作被减数、减数、差,运用减法各部分间的关系来做,又可以把它们分别看作和、加数、加数,运用减法的意义来完成。
4.加、减法各部分间关系的应用。
教师:我们学过了这些关系,可以对加、减法的计算进行验算。
(1)加法的验算。
教师板书:1 2 3 4 验算:2 0 7 9 2 0 7 9
+ 8 4 5 8 4 5 1 2 3 4
2 0 7 9 1 2 3 4 8 4 5
让学生用以前学过的验算方法进行验算,并回答用加法验算加法的方法的方法应用的是什么运算定律(加法交换律)。然后提问:
“还可以怎样验算?”(用减法验算加法。)让学生板演(如上右)。
“应用的是什么知识?”(加法中各部分间的关系:和― 一个加数 =另一个加数。)
向学生说明:因为加数有两个(845,1234),验算时用和(2079)减去哪一个加数都可以,因而用减法验算加法可以任选一个加数作减数来进行验算。
(2)减法的验算。
教师板书:1 2 3 4 验算: 2 4 7 1 2 3 4
― 9 8 7 + 9 8 7 ― 2 4 7
2 4 7 1 2 3 4 9 8 7
让学生计算,并用学过的知识进行验算。教师板书出验算的竖式(如上右),让学生说一说每种验算方法应用了什么知识。
然后教师指出:验算减法,可以用减法中各部分间的关系。用算出的差和减数相加,看是不是等于被减数;或者从被减数里减去算出的差,看是不是等于减数,都可以用来验算减法。
四、巩固练习
完成练习十二的第5―6题。
1.第5题,笔算时要求计算正确,并注意迅速;用珠算验算时,要提醒学生注意定好个位,验算的方法有些题可以由教师适当指定一种,其它的题由学生自己任意选用。
2.第6题,先让学生明确表中的a+b表示两个数的和。学生填完后,先说一说是怎样想的,然后让还生观察:每组数同第一组比较,哪个数变化了?加数变化后,和是怎么变化的?
课题一:除法的意义和乘、除法各部分间的关系
教学内容:教科书第67页除法的意义和第68页乘、除法各部分间的关系,完成第68页上“做一做”中的题目和练习十五的第l一6题。
教学目的:使学生在已学的除法知识的基础上概括出除法的意义,掌握乘;除法之间关系以及乘除法运算各部分问的关系。
教学重点:除法的意义
教学难点 :乘;除法之间关系以及乘除法运算各部分问的关系。
教具准备:把第67页除法的意义中的三个例题分别写在三张纸条上,把下面教学过程 二中的4栏式题写在小黑板上。
教学过程 :
教师:我们在前面复习总结了加法、减法和乘法的意义和有关的知识,今天我们要来复习总结除法。
一、教学除法的意义
1.教师出示第67页第(1)题,指名学生读题。提问:
“这道题的已知条件是什么?问题是什么?”
“怎样计算?为什么?”学生回答后,教师板书:40×4=160(人)
“在这个乘法算式中,40和4是什么数?160呢?”教师在上面算式40和4的下面写因数,在160的下面写积。
“结合这个例题想一想,乘法是已知什么求什么的运算?”教师强调指出:乘法是已知两个因数求积的运算。
2.教师出示第67页第(2)题,学生读题,提问:
“这道题已知什么?求什么?怎样解答?”学生列出算式后,教师板书:160÷4=40 (人)。
3.教师出示第67页第(3)题,学生读题,提问:
“这道题已知什么?求什么?怎样解答?”学生列出算式后,教师板书:160÷4=4 (班)。
“计算第(2)题和第(3)题所列出的两个除法算式所涉及的数有哪些?跟乘法的一样吗?”
“计算第(1)题所列出的乘法算式是已知两个因数求积的运算,看一看除法是已知什么求什么的运算?”
教师概括:除法是已知积和一个因数求另一个因数的运算。
让学生看教科书第67页的下面关于除法概念的结语,齐读两遍。
“在除法算式中,已知的积叫什么数?已知的一个因数叫什么数?所求的另一个因数叫什么数?”学生回答后,教师在除法算式的160的下面写被除数,在已知的因数的下面写除数,在所求的因数的下面写商。
4.让学生看黑板上的三个算式;提问:
“刚才我们看到黑板上的三个算式所涉及的数是一样的,再比较一下,第一个算式和第二、三个算式还有哪些不相同的地方?”可以多让几个学生发言。
教师在学生发言的基础上进行概括:
不相同的地方有:计算方法不同,一个是乘法两个是除法;已知数和未知数不同。
接着提问:
“在乘法算式中哪两个数是已知的?哪个数是未知的?”
“再仔细观察一下,在上面的乘法算式和除法算式中的已条件和问题有什么变化?”让学生发表自己的意见。
教师概括:从上面的三个算式可以看出,在乘法算式中已知的`,在除法算式中变成了未知的;在乘法算式中未知的,在除法算式中变成了已知的;这就是说乘法算式中的已知条件和问题与除法中的已知条件和问题正好相反。
“像这样条件和问题正好相反的两种运算叫什么运算?”
教师:除法是和乘法相反的运算,通常称除法是乘法的逆运算。
二、教学乘除法各部分间的关系
1.教师提问:
“想一想,乘法最基本的关系是什么?”
学生回答后,教师板书:积=因数×因数
“怎样求因数?”教师板书:因数=积÷另一个因数
2.“除法最基本的关系式是什么?”学生回答后,教师板书:商=被除数十除数
“除数和被除数怎样求?”学生回答后,教师板书:除数=被除数÷商
被除数=商×除数
“利用乘、除法之间的关系可以做什么?”(可以进行验算。)
让学生自己验算第68页上的乘、除法。
3.做教科书第68页上面“做一做”中的题目。
教师说明题意,强调不要计算,要根据题目给出的算式直接写出得数。学生做完后,核对时要让学生说一说为什么。
4.做练习十五的第1―4题。
(1)第l题,提问:
“第1小题已知什么,求什么?”
“已知总重量和筐数,求每筐的重量,怎样求?为什么?”
(2)第2题,先让学生独立做,核对编的题时,要让学生说一说自己编的题把什么作为已知的,什么作为未知的。
(3)第3、4题,先让学生独立做,核对时要让学生说出每一题的根据。
三、教学l和0在除法中的特性 。
教师逐步出示下面各题。
(1)10÷1= (2)0÷5= (3)5÷0= (4)0÷0=
31÷1= 0÷25= 10÷0=
198÷1= 0÷987= 789÷0=
1. 教师先让学生看第(1)题。提问:
“先算出得数,再看一看有什么规律?”学生回答后,教师指出;一个数除以1还得原数。
2.再看第(2)题。学生计算出得数并说出规律后,教师指出:0除以不是0的数还得0。
3.再看第(3)题。让学生想一下,然后提问:
“5除以0商几?想0和几相乘得5?”学生回答后,教师指出:因为找不到一个数同0相乘得5,所以5除以0得不到商。
4.教师指第(4)题提问:
“0除以0得多少?”先让学生发言,说出因为任何数与0相乘都得0;所以0除以0不能得到确定的商。
教师:从第(3)题看出,因为和0相乘不得0的数不存在;从第(4)题看出;0除以0找不到确定的商。所以0不能作除数。
四、作业
练习十五的第5、6题。
主备人:孙菲
4、整理和复习
教学内容:
教科书第26页第1、2题,练习七的第1、4题。
教学目的:
1、复习分数乘法的意义和计算法则,乘法运算定律在分数中的推广和分数乘法的简便计算。
2、进-步提高学生计算分数乘法的熟练程度和灵活计算的能力。
3、进一步培养学生认真书写及良好的审题习惯。
重点、难点:
分数乘法的意义,法则的应用。
教学过程:
一、复习分数乘法的意义。
1、口算。
(1)、听算
(2)、说出意义并分类
×2 × × 3× ×
× × 0× ×2 ×
分类:分数×整数:
一个数×分数:
(3)、听题列式
3个 的3倍 的 8的
17个 312 的 的213 倍 4.75的
小结:1、求几个几是多少
2、一个数的几倍是多少 都用乘法。
3、一个数的几分之几是多少
二、复习分数乘法的计算法则www.xkb1.com
1、分数乘法的计算法则是怎样的。
2、注意先约分后计算。
3、在第1题的前两道题只中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分。)
三、复习乘法运算定律和简便计算
教师:“谁能说一说我们学过用哪些乘法运算定律,它们在分数乘法中适用吗?”指名学生回答。
×334 ×7 245 × ×3
( + )×15 × + ×
请全班学生在练习本上做教科书第27页练习七第4题。教师巡视检查。同时,请三名学生把这三道题做在黑板上,做完后集体订正,让这三名学生说一说自己在计算中用到了什么运算定律。
三、作业新课标第一网
练习七的第1、4题。
一、 课堂小结
通过复习,我们对分数乘法的意义和计算法则有了进一步的认识,能应用乘法运算定律熟练地计算分数乘法及简便运算
★ 六年级数学教案