《探索多边形的内角和与外角和》的教案

| 收藏本文 下载本文 作者:evah201983

下面就是小编给大家带来的《探索多边形的内角和与外角和》的教案(共含13篇),希望大家喜欢阅读!同时,但愿您也能像本文投稿人“evah201983”一样,积极向本站投稿分享好文章。

《探索多边形的内角和与外角和》的教案

篇1:《探索多边形的内角和与外角和》的教案

《探索多边形的内角和与外角和》的教案

一、教学目标:

1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析

本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法。

三、教学重点、难点

1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议

关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.

五、教具、学具准备

投影仪、题板、画图工具

六、教学过程

1.复习提问:

(1)多边形的内角和是多少?

(2)正八边形的每一个内角为度?

2.创设问题情景,引入新课:

教师投放课本51页图9-35时,并出示以下问题:

小明沿一个五边形广场周围的小路,按顺时针方向跑步。

(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的'边有何关系?

(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?

点拨:

请填写下题:

如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=   ,∠β=     ,∠γ=   ,∠δ=     ∠θ=    .

因为∠α+∠β+∠γ+∠δ+∠θ=.

所以∠1+∠2+∠3+∠4+∠5= .

由此可得:五边形的外角和是360°

(4)你能借助内角和来推导五边形的外角和吗?

点拨:

因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°-(5-2)×180°=360°。

(5)你用第二种方法推导下列多边形的外角和三角形的外角和    四边形的外角和   五边形的外角和   n边形的外角和是得出结论:多边形的外角和都等于360°。

4.应用举例

例 一个多边形的内角和等于它的外角和的3倍,它是几边形?

点拨:

设出未知数,根据相等关系: 内角和=3×外角和列出方程。

5.练习:

见学案练习一和练习二

6.达标检测

见学案达标检测

7.小结

本节课你学到了什么?有什么收获?

8.作业

学生口答,并计算出度数

学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.

学生质疑思考,一时找不到方法,可按点拨的引导继续思考。

生充分思考,认真分析,小组讨论交流得出答案。

学生找关系,小组积极讨论、交流,小组汇报结果。

学生独立探究,很快得出答案.

学生独立解决

让学生先总结、交流谈体会

篇2:《多边形的内角和与外角和》教案

教学任务分析

教学目标

知识技能

了解多边形的外角定义,掌握多边形的外角和公式。

数学思考

1、  通过动手实践、实验、测量、推理等数学活动,探索多边形的外角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、  利用多边形内角和与外角和公式解决实际问题,让学生体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、  经历多边形外角和的探索过程,让学生逐步从实验几何过渡到论证几何。

解决问题

通过探索多边形外角和的过程和复习多边形内角和公式,尝试从不同的角度寻求解决问题的方法并能有效地解决问题。

情感态度

通过观察、猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

重点

(1)多边形的外角含义;

(2)多边形外角和公式及探索过程。

难点

(1)多边形外角和公式的探索过程;

(2)利用多边形内角和、外角和公式解决实际问题。

教学流程安排

活动流程图

活动内容和目的

活动一:创设情景,引入新课:

问题:将一块正六边形纸片如图(1)所示,

做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面),见图(2),需在每一个顶点处剪去一个四边形,如图(1)中的四边形AGA1H,你会做吗?试着动手做一个

思考:?GA1H等于多少度?

活动二:

问题:清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出?1+ ? 2+ ? 3+

?4+ ? 5等于多少吗?你是怎样得到的?

设计意图:学生亲自动手将一块正六边形纸片如图(1)所示,做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面),在活动中体会多边形内角、多边形内角和,提高学生学习热情。

设计意图:通过观察、猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的`确定性,尝试从不同的角度寻求解决问题的方法并能有效地解决问题,提高学生学习积极性,让学生逐步从实验几何过渡到论证几何。

活动三:分别求出下列多边形的外角和的度数.

猜想:多边形外角和是______度。

活动四:

练习1:一个多边形的外角都等于60°,这个多边形是_______边形 ;

练习2:一个多边形的内角都等于120°,这个多边形是_______几边形 ;

练习3:阅读材料:多边形边上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形,图(1)给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形;请你按照上述方法将图(2)中的六边形进行分割,并写出得到的小三角形的个数,试把这一结论推广至n边形。

图(1)

图(2)

活动五:

小结、布置作业

设计意图:通过探索多边形外角和的过程和复习多边形内角和公式,发展学生的推理能力,让学生逐步从实验几何过渡到论证几何。

设计意图:综合运用新旧知识解决问题。

设计意图:回顾全节内容,巩固、提高……

篇3:探索多边形内角和与外角和初二数学说课稿

探索多边形内角和与外角和初二数学说课稿

一、学生起点分析

学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。

二、教学任务分析

本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。

三、教学目标

【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的`思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

四、教学重难

【教学重点】多边形内角和定理的探索和应用。

【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透。

五、教学过程设计

本节课分成七个环节:

第一环节:创设现实情境,提出问题,引入新课;

第二环节:概念形成;

第三环节:实验探究;

第四环节:思维升华;

第五环节:能力拓展;

第六环节:课时小结;

第七环节:布置作业。

第一环节创设现实情境,提出问题,引入新课。

1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。

2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

目的:

1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。

2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。

第二环节概念形成

1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。

2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。

目的:

1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。

2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。

篇4:课题:多边形的内角和与外角和教案

课题:多边形的内角和与外角和(教案)

课题:多边形的内角和与外角和(教案)  茌平县杜郎口中学  徐利 一、教学目标: (1) 让学生经历探索多边形的内角和与外角和的过程,了解多边形的内角和与外角和公式,进一步体会转化的数学思想。 (2) 会用多边形的内角和与外角和公式解决实际问题。 (3) 让学生进一步感受从特殊到一般的数学推理过程和数学思考方法。 二、引入新课: 同学们,很高兴能有一次和大家合作的机会。 我们已经知道了三角形的内角和是180°,四边形的内角和是多少?五边形、六边形呢? 今天我们就一起来探究多边形的内角和以及外角和。 三、预习提纲 1、画一画 刚才同学们说四边形的内角和为360°,你能否画一个四边形验证一下。 通过特殊的四边形我们发现四边形的内角和为360°,如果是这样的四边形呢?我们要研究的是任意多边形的内角和。 2、试一试 D C B A D C B A ⑴你会利用三角形的内角和计算四边形ABCD的内角和吗?请与同学交流。                   ①这位同学非常聪明能够快速又准确地得出四边形的内角和为360°,我们把掌声送给这位同学。 ②通过教师的指导:我还有另外的一种方法。引导不同方法的得出。 ③这几种方法都是把四边形问题转化为了什么问题。 ④你认为哪种方法比较好?   3、想一想 过渡语:请选择你认为的比较好的方法来完成下表。 尝试完成下表,你有什么结论? 多边形 边数 分成三角形的个数 图形   计算规律 内角和 三角形           四边形           五边形           六边形           七边形                       n边形           结论:n边形内角和公式为:_________。 ①追问:n代表什么?   n-2表示什么含义?   为什么要乘以180° ②引导学生比较(n-2)・180°与n・180°-360° ③多边形的内角和与边数有着直接的关系,边数越多内角和越多。   4、练一练 (1) 十二边形的内角和是多少?       (3)一个多边形的`内角和为2700°,求它的边数。         A BB E C D 小明 ●   5、  议一议 清晨 ,小明沿一个五边形广场周围的小路按逆时针方向跑步。 (1)小明每从一条小路转到下一条小路时,身体转过的角是哪个角? 在图中标出它们. 这些角也就是五边形的外角。  (2)他每跑完一圈,身体转过的角度之和是多少? 跑完一圈回到原点说明他正好转过了360°。也就是说明了什么? (3)你能说明上述结论的正确性吗? 180°代表什么含义? 内外角的总和-内角和就得到了外角和。         6、猜一猜 七边形、八边形以及n边形的外角和各是多少?你的结论是什么?   多边形的外角和的不随边数的变化而变化,是个定数,总是360°,够奇妙吧!如果用心观察,生活中存在很多这样有趣的奇妙的事情。 7、达标检测 (1) 若一个多边形的边数增加1,则这个多边形的内角增加_____度。 (2) 一个多边形的内角和与外角和相等,这是一个几边形? 1、  浅谈收获 通过本堂课的学习,你有哪些收获?还有哪些哪些疑惑?请与大家分享。

篇5:《探索多边形的内角和与外角和》的课程教学设计

[教学目标]

知识与技能:

1会用多边形公式进行计算。

2理解多边形外角和公式。

过程与方法:

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]

教学重点:多边形的内角和。的应用。

篇6:《探索多边形的内角和与外角和》的课程教学设计

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:]

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

边形边形边形

活动2:

①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?

②总结多边形内角和,你会得到什么样的结论?

多边形边数分成三角形的个数图形内角和计算规律

三角形31

180°(3—2)·180°

四边形4

五边形5

六边形6

七边形7

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

总结多边形的内角和公式

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

(二)探索多边形的外角和

活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和。五边形的外角和等于多少?

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________—五边形的内角和

活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A。最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的'外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3。已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本P84:习题7。3的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

A:360°B:540°C:720°D:900°

篇7:多边形的内角和与外角和同步练习题

多边形的内角和与外角和同步练习题

【基础知识训练】

1.如图五边形ABCDE中从A画对角线可画______条,由此把五边形分成_____个三角形,请在图中画出.

2.在四边形ABCD中,∠A=90°,∠C=60°,则∠B+∠D=_______度.

3.正五边形内角和为______度,每个内角为______,每个外角为_____

4.(,北京)如果正多边形有一个外角为72°,那么它的边数是_____.

5.在多边形中,n边形的内角和为____,而n边形的外角和是指在n边形的n个顶点处各取一个外角相加,其总和为_____,与_______的多少无关.

6.(2005,广州市)多边形的内角和与其一个外角的度数总和为1350°,则这个多边形的边数为________.

7.一个五边形的三个内角是直角,另两个内角相等,则相等的这两个角是

A.45°B.135°C.120°D.108°

8.一个多边形的每一个外角都等于45°,则这个多边形的内角和为()

A.720°B.675°C.1080°D.905°

9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.

A.三B.四C.五D.六

10.若n边形的内角和与外角和之比为9:2,则该多边形为_______边形.

11.一个多边形的内角和等于1800°,则它的边数是______,共有对角线____条.

12.一个四边形的内角中,钝角最多有()

A.一个B.两个C.三个D.四个

13.一个多边形的外角不可能都等于()

A.30°B.40°C.50°D.60°

【创新能力应用】

14.一个多边形截去一个角(不过顶点)后,所形成的一个多边形的内角和是2520°,那么原多边形的边数是()

A.13B.15C.17D.19

15.一个多边形除去一个内角后,其余各内角的和为2750°,则这个内角是()

A.110°B.120°C.130°D.140°

16.有两个多边形,它们的边数的比为1:2,内角和的比为1:4,你能确定它们各是几边形吗?试试看.

17.如果一个多边形的边数增加1,那么这个多边形的内角和增加多少度?将n边形的边数增加一倍,则它的'内角和增加多少度?

18.如果一个多边形的每一个外角都是锐角,请推断该多边形的边数最小是多少?

【三新精英园】

19.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.

20.(2005,广东省)阅读材料:多边形边上或内部的一层与多边形各顶点的连线,将多边形分割成若干个小三角形,如图(一)给出了四边形的具体的分割方法,分别将四边形分割成了2个,3个,4个小三角形.

请你按照上述方法将图(二)1-3中的六边形进行分割,并写出得到的小三角形的个数,试把这一结论推广至n边形.

答案:

1.两条,三个2.210°3.540°,108°,72°4.五

5.(n-2)180°,360°,n6.九

7.B8.C9.B10.1111.12,6612.C13.C14.B15.C

16.三角形和六边形17.180°,n180°18.519.四边形,360°

20.(1)从一个顶点出发,连接其它顶点(4个)

(2)从一条边上取一点连接其它顶点(5个)

(3)从一条对角线上取一点连接各顶点(6个),

n边形分别为(n-2)个,(n-1)个,n个

篇8:《多边形的内角和与外角和》教学反思

《多边形的内角和与外角和》教学反思

完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的'一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

篇9:多边形的内角和与外角和教学反思

多边形的内角和与外角和教学反思

体会及反思:

1、在初一旧教材中完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。结合新教材中这一部分内容的编排,所以特意在教学过程中安排了这样一堂活动课,希望对于新课程标准思想有所体现。

2、为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的.培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

虽然整堂课下来出现了较多的漏洞,但我想作为一个新教师的一种尝试也未尝不可。只有通过不断地尝试,不断地失败,我们才能到达胜利的彼岸!

篇10:数学教案-探索多边形内角和

教学目标

知识目标

1.探索多边形内角和定义、公式

2.正多边形定义

能力目标

1.发展学生的合情推理意识、主动探索的习惯

2.发展学生的说理能力和简单的推理意识及能力

德育目标

培养用多边形美花生活的意识

教学重点

多边形内角和公式的推导

学难点

多边形内角和公式的简单运用

教学方法

探索、讨论、启发、讲授

教学手段

利用学生剪纸、投影仪进行教学

教学过程 :

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的.内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

E

C

B

A

G

如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

F

E

D

A

B

C

图(1)                                  图(2)

D

篇11:多边形的内角和与外角和导学案PPT课件公开课实录

多边形的内角和与外角和导学案PPT课件公开课实录

9.2多边形的内角和与外角和

教学目的

1.使学生了解多边形及多边形的内角、外角等概念。

2.使学生通过不同方法探索多边形的内角和与外角和公式,并会利用它们进行有关计算。

重点、难点

1.重点:多边形的内角和与外角和定理。

2.难点:多边形的内角和,外角和定理的推导

教学过程

一、复习提问

1.什么叫三角形?

2.三角形的内角和是多少?

3.什么叫三角形的外角?什么叫外角和?三角形的外角和是多少?

二、新授

1.多边形的概念,

三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。

你能说出什么叫四边形、五边形吗?

如图(1)它是由不在同一直线上的4条线段首尾顺次连结组成的平面图形,记为四边形ABCD。(按顺时针或逆时针方向书写) A

D D

C B F

A C E

C

A B E

B (1) (2) D (3)

图(2)是由不在同一直线上的5条线段首尾顾次连结组成的平面图形,记为五边形ABCDE。

一般地,由n条不在同一直线上的线段首尾顺次连结组成的平面图形,记为n边形,又称多边形。

与三角形类似如图,∠A、∠D、∠C、∠ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角∠CBE和∠ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。

如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等。连结多边形不相邻的两个顶点的线段叫做多边形的对角线,如图1,线段AC是四边形 ABCD的对角线,如图2,线段AD、AC是四边形ABCDE的对角线,如图3中线段AC、AD、AE是六边形ABCDEF的对角线。

问:(1)四边形有几条对角线?(两条AC、BD)

(2)五边形有几条对角线?

以A为端点的对角线有两条AC、AD,同样以月为端点的对角线也有2条,以C为端点也有2条,但AC与CA是同一条线段,以D为端点的两条DA、DB与AD、BD都分别表示同一条线段。所以只有5条。

(3)六边形有几条对角线?n边形呢? 六边形有9条对角线。

从以上分析可知从n边形的一个顶点引对角线,可以引(n-3)条, (除本身这个点以及和这点相邻的两点外),那么n个顶点,就有n(n- 3)条,但其中每一条都重复计算一次,如AB与BA,所以n边形一共有条对角线。

大家可以加以验证:当n=3时,没有对角线,当n=4时,有2条;当n=5时,有5条:当n=6时,有9条…

2.多边形的内角和公式。

三角形是边数最少的多边形,它的内角和等于180°,那么一般n边形是否也有内角和公式呢?让我们先从四边形,正边形,六边形……开始。

从上面对角线的.研究可知,一条对角线把四边形分成2个三角形,这两个三角形的内角和的和就是四边形的内角和,五边形的内角和就是图中3个三角表内角和的和。

让学生填写教科书表9.2.1,由此你可以得到“n”边形的内角和公式吗?

n边形的内角和=(n-2)?180°知道一个多边形的内角和,根据公式也可以求边数n。

例1.一个多边形的内角和等于2340°,求它的边数。

问题:一个正多边形的一个内角为150°,你知道它是几边形?

分析:正多边形的每个内角都相等。多边形的内角和等于(n-2)?180°,还可以用以下的划分来说明,即在n边形内任取一点P,连结点P与多边形的每个顶点,可得几个三角形?这几个三角形的各内角与这个多边的各内角之间有什么关系?请你试一试。

对有困难的学生教师可以加以引导。

如图(教科书图9.2.5)每一个三角形都有一条边就是多边形的边,因此n边形就可划分成n个三角形,这n个三角形的内角和减去以 P为顶点的周角所得的差就是n边形的内角和。因此,n边形的内角和为:

n?180°-360°=n?180°-2?180°=(n-2)?180°

问:还有其他方法吗?让学生自主探索,对不同方法给予鼓励。

3.多边形的外角和。

什么叫多边形的外角和。

与三角形的外角和一样,与多边形的每个内角相邻的外角有两个,这两个角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和,如教科书图9.2.6,∠1+∠2+∠3+∠4就是四边形的外角和。

多边形的外角和是否也可以用公式表示呢?下面我们也来探讨。

因为n边形的一个内角与它的相邻的外角互为补角,所以可先求出多边形的内角与外角的总和,再减去内角和,就可得到外角和。

让学生填写填教科写表9.2.2

n边形的内角与外角的总和为n?180°

n边形的内角和为(n-2)?180°

那么n边形的外角和为n?180°-(n-2)?180°=n?180°-n?180°+360°=360°

这就是说多边形的外角和与边数无关,都等于360°。

例2.一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数。

分析:正多边形的各个内角都相等,那么各个外角也都相等,而多边形的外角和是360°,因此只要求出每个外角度数,就可知是几边形了。

点拨;多边形的外角和等于360°,与边数无关,故常把多边形内角的问题转化为外角和来处理。

三、巩固练习

1.教科书第70页练习1.2。

第2题引导学生从外角考虑,多边形的内角是锐角,那么和这个内角相邻的外角是什么样的角?[钝角]

多边形的外角和是360°,那么在这些外角中钝角的个数最多可以是几个?3个可以吗?4个呢?让学生动手算一算,由他们自己得出结论.

从而得到最多可以有3个外角是钝角,即多边形的内角中最多可以有3个是锐角。

四、小结

本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)?180°。这种化未知为已知的转化方法,必须在学习中逐步掌握。由于多边形的外角和等于360°,与边数无关,所以常把多边形内角的问题转化为外角和来处理。

五、作业

教科书习题9。2 1、2、3、4。

篇12:探索与发现(一)三角形内角小学数学教案

活动目标:

1、使学生能够在已知三角形两个角的度数的情况下,求出第三个角的度数。

2、通过撕拼、折叠、测量等方法,探索和发现三角形三个内角和的度数等于180度。

活动准备:

量角器、剪刀、小组活动记录表(15份)、各式各样的三角形(3锐,2钝,2直,15份)、灯谜3条、大信封(里面装有2锐、1直、1钝形大,后粘有双面胶)、几何画板、五边形的图、剪用的大三角形(色浅,画出角的符号)、黑色水彩笔等。

活动过程:

(活动目标:1、明确什么是三角形的内角;2、以四人小组为单位,通过量、撕拼、折叠等方法,探索和发现三角形三个内角和的度数等于180度。)

活动一:探究与发现

三角形的三个角是哪三个角?谁能到台上来指一指?(师画出角的符号)我们把这三个角称为三角形的内角。(板书:内角)三个内角的总和称为内角和。(板书:和)你怎么知道三角形三个角的内角和就是180度?你们有什么办法可以验证吗?量一个就能说明它的内角和是180度吗?(生答:测量等)

好,下面我们以四人小组为单位,每个同学选择桌面上几个不同类型的三角形,动手量一量、折一折、画一画,验证你的想法。并将测量的结

果填入小组活动记录表中。

四人小组活动:师巡视。

除了量的办法,你们还有什么好办法?

学生交流、反馈:你们用的是什么办法?发现了什么?(注意学生评价,操作+表述,投影学生的活动记录表)

生1:我用的是测量的办法。

(师适时板书,尽量选不同类型的三角形)

谁来汇报一下你们测量的结果。真不错!

还有谁也是用测量的办法?测量的是什么三角形?还有吗?

哗!大家测量了各种类型的三角形三个角的度数。为什么大家用测量的办法会出现这样的情况?(度数和不同)

学生反馈:因为存在误差。

小结:同学们会用实验的方法来验证自己的猜想是否正确,这是一种好方法,而且是进行科学研究常用的一种方法。老师还用计算机中的几何画板,收集了很多大小不同的三角形,你们仔细观察三角形各个内角的度数和内角和的度数,你得出什么结论?

电脑演示。(解释角的问题)

小结:三角形三个角的内角和是180度。

谁还有不同的办法也可以验证?

生2:我用的是撕拼的办法。(提示:可以将3个角撕下来,拼拼看) 你是在怎么做的?上台来给大家演示一下。这个办法行不行?你们也试着做一做。

生3:我用的是折叠的办法。

请你也来给大家说一说。(折叠后画出角的符号)

这个办法行不行?你们也试着做一做。

对于撕和折的办法,你觉得怎样?

评价学生发言:同学们通过小组合作,用量、折、拼的办法验证了“三角形的内角和等于180度”的猜想。(板书:三角形三个内角和等于180度)这真是个了不起的发现!老师真的非常佩服你们这种大胆质疑的勇气和严谨的科学精神。

(活动目标:通过形式多样的练习使学生进一步掌握三角形内角和的规律,并能根据已知两个角的度数,求出第三个角的度数。)

活动二:试一试

1、基础训练。

(1)老师这里有一个三角形,你能求出其中一个角的度数吗?这是书28页的“试一试”,请同学们打开书,独立完成。

学生反馈:角A是多少度?你是怎么想的?还有什么办法吗?你发现了什么?

小结:已知三角形的两个角的度数,可以求出另一个角的度数。

如果是直角三角形,那么两个锐角的度数和等于90度。

(2)直角三角形的度数,同学们都算对了。老师这儿还有三个三角形,比比看谁能最先算出角的度数,直接写在书上。请打开书29页,完成“练一练”第1题,你是怎么想的?(把书合上)

2、剪三角形。

你们看,老师手上有一个大三角形,它的内角和是多少?仔细观察,我用剪刀剪了一刀,(投影)变成了两个三角形。(一左一右手拿小三角形)这个三角形的内角和是多少?另一个三角形的内角和是多少?(将两个三角形拼合)这个三角形内角和是多少?都认为是180度吗?(如有怀疑的,

提示你想自己试试吗?)请你们注意看,老师将其中一个三角形又剪一刀。这个小三角形的内角和是多少?还可以继续往下剪吗?你发现了什么?

3、学生反馈。

小结:只要是三角形,不管它的形状、大小,所有三角形的内角和都是180度。

4、知识拓展。

刚才同学们知道了三角形(也就是三边形)、四边形(也就是长、正方形)内角和是多少。用同样的办法,你会求五边形、六边形的内角和吗?(投影五边形图)感兴趣的同学可以课后自己去研究。把你们重要的发现,写成数学小论文,寄给报刊杂志社的叔叔阿姨们,相信他们也一定也会佩服我们同学的发现。

篇13:探索与发现(一)三角形内角小学数学教案

教学背景:

“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础,并且培养学生的数学思维能力,波利亚指出:“学习任何东西最好的途径是自己去发现”。通过本节课学习,让学生自己发现、探索获得学习数学的思维方法,增强信心。

教学课题:

北师大版小学数学四年级下册第二单元内容《探索与发现(一)三角形内角和》。

教材分析:

教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

本节课首先让学生对三角形的特点进行复习。随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。 学情分析:

有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。

教学方法:

渗透猜想——验证——结论——应用——拓展

教学目标:

1、知识目标:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。已知三角形两个角的度数,会求第三个角的度数。

2、能力目标:通过渗透猜想--验证--结论--运用—拓展的学习方法,提高学生动手操作和合作交流的能力,培养学生的主体探究意识。

3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣,体验学习数学的快乐。

教学重点:

掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题

教学难点:

是探索性质的过程。

教学过程:

一、创设情境,激发兴趣引入新课

师:同学们,这节课我们学习探索与发现(一)。上节课我们已经认识了三角形,知道了三角形的特点。哪位同学能说说三角形有哪些特点呢?

生回答。(互相补充)

师:老师这里有个三角形,谁愿意上来指出三角形的三个角?(课件出示)

师:这三个角,是三角形的内角,三个内角的和,就是三角形内角和。今天,我们就来研究一下和三角形的内角和有关的一些知识。

(课件出示课题:三角形的内角和)

二、探究验证

师:下来同学们看一下对这三个不同三角形内角和的一些说法。(课件演示)我想问问同学们,他们的说法对吗?

学生各抒己见。

同学们,下来我们来研究、验证他们各自的说法。

验证一:测量(课件出示)

(1)测量,小组合作。(共同观察:一个学生测量,一个检验,一个记录,另一个学生报告结果。)

学生开始进行测量,教师巡视。教师选取其中几组记录单进行讲评。

(2)汇报结果(这些测量结果都在180度左右,但不是精确的180度)。 原因:①有可能是我们在量三角形里有一些误差。

②我认为也可能是量角器出现误差了。

③或许量的时候是半度的,我们四舍五入为整数了,所以出现了误

差。

师:你们说的都有可能,但是,不管怎样,从我们的测量结果,是否能很好的说明上面3个三角形说法对与错呢?

生:不能。

师:那我们继续来验证。

验证二:撕拼。

(1)同学们取出三角形学具,把三个角撕下来,拼在一起。学生动手操作。(注意把三个角的顶点对在一起)

(2)提问:你发现了什么?学生发现:三个角拼成一个平角。平角是多少度?说明了什么?

学生回答:平角是180°。

说明三角形内角和刚好等于180°.(课件演示撕拼过程)

同学们,我们还有没有其他的验证方法呢?

验证三:折叠。

可以把三角形的三个角折叠在一起,如果能在一条线上,就可以说明它们的和是180度。

学生动手折叠,教师巡视,指名几个同学上来说一说折叠的结果。(课件展示)

师:折叠好的同学说一说。这样,是不是就能验证三角形的内角和都是180度了?

生:是。(如果还有其他方法,希望同学们互相讨论,进行再一次验证)(课件展示)

师:现在,通过3种方法验证,这三个三角形的内角和都一样是180度,这样他们3个三角形也就没有可争执的了。那么,我们也该放松一下做些练习了。

三、解决问题

师:我们应用这个结论,来练习几个题目。(课件展示)

在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

探索与发现(一)三角形内角小学数学教案范文合集

《多边形的内角和与外角和》教案

《多边形内角和》七年级数学下学期说课稿

三角形的内角和教案

三角形内角和

八年级数学上册《多边形的内角和》教学设计

关于三角形的内角和教案

三角形内角和 教案教学设计

三角形内角和说课稿

三角形的内角和

四年级数学多边形的内角和随堂检测题及答案

《探索多边形的内角和与外角和》的教案(精选13篇)

欢迎下载DOC格式的《探索多边形的内角和与外角和》的教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档