下面是小编整理的七年级数学二元一次方程组测试练习题及答案(共含12篇),欢迎您阅读分享借鉴,希望对您有所帮助。同时,但愿您也能像本文投稿人“smyang668”一样,积极向本站投稿分享好文章。
七年级数学二元一次方程组测试练习题及答案
一、耐心填一填(每题3分,共30分)
1.如果2x2a-b-1-3y3a+2b-16=10是一个二元一次方程,则ab=________.
2.已知 x- y=1,写出用含x的代数式表示y的式子:________.
3.二元一次方程kx-3y=2的一组解是 ,则k=_______.
4.方程3x+2y=13的所有正整数解是________.
5.写出一个二元一次方程组_______,使它的解是 .
6.若(2x-3y+5)2+│x-y+2│=0,则x=________,y=_______.
7.已知两数的和是25,差是3,则这两个数是_______.
8.解方程组 ,用________消元法较简便,它的解是________.
9.已知方程组 的解也是二元一次方程x-y=1的一个解,则a=_________.
10.有一个两位数,它的两个数字之和为11,把这个两位数的.个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字是x,十位数字为y,则根据题意可得方程组_________.
二、精心选一选(每题3分,共30分)
11.下列方程组是二元一次方程组的是( )
A.
12.二元一次方程组 的解是( )
A.
13.下列各组数中,不是方程3x-2y-1=0的解是( )
A.x=1,y=1 B.x=2,y= C.x=0,y=- D.x=2,y=1
14.三个二元一次方程2x+5y-6=0,3x-2y-9=0,y=kx-9有公共解的条件是k=( )
A.4 B.3 C.2 D.1
15.今年甲的年龄是乙的年龄的3倍,6年后甲的年龄就是乙的年龄的2倍,则甲今年的年龄是( )
A.15岁 B.16岁 C.17岁 D.18岁
16.下列各组数中:(1) 是方程4x+y=10的解有( )
A.1个 B.2个 C.3个 D.4个
17.4辆板车和5辆卡车一次能运27吨货,10辆板车和3辆卡车一次能运20吨货,设每辆板车每次可运货x吨,每辆卡车每次可运货y吨,则可列方程组为( )
18.已知方程组 ,那么,m,n的值是( )
A.
19.方程x+y=5的非负的整数解是( )
A.4个 B.5个 C.6个 D.7个
20.一张试卷25题,若做对了一题得4分,做错了一题扣1分,小李做完此卷后得70分,则他做对的题目数是( )
A.18 B.17 C.19 D.20
三、用心做一做(每题10分,共40分)
21.解下列方程组:(每小题5分,共10分)
(1)
22.已知y=x2+px+q,当x=1时,y的值为2;当x=-2时,y的值为2,求当x=-3时,y的值.(10分)
23.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?(10分)
24.松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个,它一连共采112个松子,平均每天采14个,问这几天当中几天雨天几天晴?(10分)
答案:
1.12 2.y= (x-2) 3.-4 4.
6.-1 1 7.14 11 8.加减 9.-
10.
11.B 12.B 13.D 14.B 15.D 16.B 17.C 18.D 19.C 20.C
21.(1)
22.由x=1时,y=2,x=-2时,y=2,分别代入到y=x2+px+q中得
,
所以y=x2+px+q就化为y=x2+x,当x=-3时,y=x2+x=(-3)2-3=6.
23.设每块长方形的长是xcm,宽是ycm,根据题意,得 ,
所以,长是400cm,宽是100cm.
24.6天雨天,2天晴天.
关于数学七年级二元一次方程组的练习题及答案
基础巩固
1.在3x+4y=9,如果有2y=6,那么x=__________.
解析:由2y=6得y=3,把y=3代入3x+4y=9中有3x+12=9,解得x=-1.
答案:-1
2.已知x=2,y=1是方程2x+ay=5的解,则a=____________-.
解析:根据方程组的解的概念有:2×2+a1=5解得a=1.
答案:1[来源:学。科。网]
3.方程组的解是
A.B.
C.D.
解析:分别把A、B、C、D四组x、y的值代入,使方程组的两个方程左右两边均相等的即为方程组的解.
答案:C
4.已知△ABC中,∠A=x,∠B=2x,∠C=y,试写出x、y的关系式,若x=y,试求出各角的大小.
解析:根据三角形内角和等于180°建立方程,当x=y时,可用x替换方程中的y,求出x,从而求出每个角的大小.
答案:由题有:x+2x+y=180°,即3x+y=180°,
当x=y时,有3x+y=180°,4x=180°,
所以x=45°,则y=45°,
故∠A=45°,∠B=90°,∠C=45°.
综合应用
5.已知方程组由于甲看错了方程①中的a,得到方程组的解为x=-3,y=-1,乙看错了方程②中的b,得到方程组的解为x=5,y=2,试求出a、b的值.[来源:Z,xx,k.Com]
解析:根据方程组的解的概念可知:x=-3,y=-1是方程②的解,x=5,y=4是方程①的`解,故分别代入方程②①中可求出a、b.
答案:根据题意把x=-3,y=-1代入方程②得:-12+b=-2,
解得:b=10,
把x=5,y=2代入方程①中,得5a+20=15,
解得a=-1.
6.足球联赛得分规定:胜一场得3分,平一场得1分,负场得0分.某队在足球联赛的4场比赛中得了6分,这个队胜了几场,平了几场,负了几场?
解析:设胜x场,平y场,则负〔4-(x+y)〕场,共得(3x+y)分,可得方程.
答案:设这个队胜x场,平y场,依题意得,3x+y=6,
由0≤x≤4,0≤y≤4,有:x=0,y=6>4,不可能;
x=1,y=3,4-(x+y)=0;x=2,y=0,4-(x+y)=2;
x=3,3x=9>6故不可能;
所以胜1场、平3场或胜2场、负2场.
7.(福建福州模拟)方程组的解是()
A.B.
C.D.
解析:分别把A、B、C、D四组x、y的值代入,使方程组的两个方程左右两边均相等的即为方程组的解.
答案:C
8.(2010内蒙古鄂尔多斯模拟)国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市某中学国家免费提供教科书补助的部分情况.
年级
项目七八九[合计
每人免费补助金额(元)1109050――
人数(人)80300
免费补助总金额(元)400026200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,根据题意列出方程组为()
A.B.
C.D.
解析:由表中数据可知,七、八、九三个年级的人数和为300,而九年级人数是已知数80,如果设七年级的人数为x,八年级的人数为y,易得方程:x+y+80=300;同样根据免费补助总金额可得方程:110x+90y+4000=26200,于是可得方程组:
一、填空题(每题2分,共20分)
1、把方程2x-y-5=0化成含y的代数式表示x的形式:x=.
2、在方程3x-ay=8中,如果是它的一个解,那么a的值为.
3、已知二元一次方程2x-y=1,若x=2,则y=,若y=0,则x=
.
4、方程x+y=2的正整数解是__________.
5、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
6、
7、如果方程组的解是,则,。
8、已知:,,则的值是。
9、若与是同类项,则
10、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X米,每分钟Y米,则可列方程组{___________________.
二、选择题:(每题3分,共18分)
11、下列各方程组中,属于二元一次方程组的是()
A、B、C、D、、
12、方程组的解是()
A、B、C、D、
13、已知的解是,则()
A、B、C、D、
14、用加减法解方程组时,有下列四种变形,其中正确的是()
A、B、C、D、
15、既是方程2x-y=3,又是3x+4y-10=0的解是()
A、B、C、D、
16、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是()
A、14B、13C、12D、155
三、解方程组(每题6分,共24分)
17、用代入法解
18、用代入法解
19、加减法解
20、用加减法解、
21、二元一次方程组的解互为相反数,求m的.值.(8分)
四、用方程组解应用题(每题10分,共30分)
22、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?
23、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
24、某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(13分)
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案?
七年级下册数学二元一次方程组课时测试题
一、选择题:
1.下列方程中,是二元一次方程的是
A.3x-2y=4zB.6xy+9=0
C.+4y=6D.4x=
2.下列方程组中,是二元一次方程组的是()
3.二元一次方程5a-11b=21()
A.有且只有一解B.有无数解C.无解D.有且只有两解
4.方程y=1-x与3x+2y=5的公共解是()
A.
5.下列各式,属于二元一次方程的个数有()
①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;⑤x2-y2=2
⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+x
A.1B.2C.3D.4
6.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的`有()
A.
二、填空题
7.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.
8.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.
9.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.
10.已知是方程x-ky=1的解,那么k=_______.
11.二元一次方程x+y=5的正整数解有______________.
12.以为解的一个二元一次方程是_________.
13.已知的解,则m=_______,n=______.
三、解答题
14.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.
15.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?
16.二元一次方程组的解x,y的值相等,求k.
17.已知x,y是有理数,且
(│x│-1)2+(2y+1)2=0,则x-y的值是多少?
18.根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
七年级数学一次方程与方程组同步测试及答案
一、选择题(每题2分,共20分)
1.方程2(x+1)=4x-8的解是()
A.B.-3C.5D.-5
2.方程2-x3-x-14=5的解是()
A.5B.-5C.7D.-7
3.把方程去分母后,正确的结果是()
A.B.
C.D.
4.用加减法解方程组中,消x用法,消y用法()
A.加,加B.加,减C.减,加D.减,减
5.若方程组的解与的和为0,则的值为()
A.-2B.0C.2D.4
6.若关于x的方程2x-4=3m和x+2=m有相同的根,则m的值是()
A.10B.-8C.-10D.8
7.代数式2k-13与代数式14k+3的值相等时,k的值为()
A.7B.8C.9D.10
8.由方程组可得出与的关系是()
A.B.C.D.
9.如果中的解x、y相同,则m的值是()
A.1B.-1C.2D.-2
10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()
A.3场B.4场C.5场D.6场
二、填空题(每题2分,共10分)
11.已知方程4x+5y=8,用含x的代数式表示y为__________________。
12.关于的方程的解是3,则的值为__________________。
13.如果=3,=2是方程的.解,则=__________________。
14.若5x-5的值与2x-9的值互为相反数,则x=__________________。
15.方程组的解是,则a+b=__________________。
三、解答题(每题10分,共70分)
16.已知与是同类项,求、的值。
19.车间里有名工人,每人每天能生产螺母个或螺栓个,若一个螺栓配两个螺母,那么应分
配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?
20.若方程组与方程组的解相同,求、的值。
21.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
现在请你设未知数列方程组来解决这个问题。
22.某校七(2)班40名同学为“希望工程”捐款,共捐款100元。捐款情况如下表:
捐款(元)1
234
人数67
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,不过应用方程组可以解决这个问题。现在设捐款2元的有名同学,捐款3元的有名同学,请你列方程组并解出方程组。
测试卷答案
一、选择题
1、C2、D3、D4、C5、C6、B 7、B8、C9、B10、C
二、填空题
11.;12.4;13.7;14.2;15.3。
三、解答题
16.,。
17.⑴;⑵。
18.⑴;⑵。
19.设应分配人生产螺栓,人生产螺母,则解得
20.由,解得:,代入方程组中,解得:。
21.解:设每块地砖的长为xcm,宽为ycm,则根据题意,得
解这个方程组,得
答:每块地砖的长为45cm,宽为15cm.
22.根据题意得:
一、说教材
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?
根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
七、说板书设计
二元一次方程组
xy=222xy=40
二元一次方程二元一次方程组
二元一次方程的解二元一次方程组的解
教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
难点:寻找等量关系
教学过程:
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?
教学目标:
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
教学过程:
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
新课:
看一看课本99页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x
y
上表中哪对x、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在
这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
例1(1)方程(a+2)x(b-1)y=3是二元一次方程,试求a、b的取值范围。
(2)方程x∣a∣–1(a-2)y=2是二元一次方程,试求a的值.
例2若方程x2m–15y3n–2=7是二元一次方程.求m、n的值。
例3已知下列三对值:
x=-6,x=10,x=10
y=-9,y=-6,y=-1
x-y=6
2x+31y=-11
(1)哪几对数值使方程x-y=6的左、右两边的值相等?
(2)哪几对数值是方程组的解?
例4求二元一次方程3x+2y=19的正整数解。
设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
教科书第102页练习
习题8.1的1、2题
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
(7)布置作业,提高升华
教科书第102页3、4、5题。
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的`课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页
教学目标
(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。
(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。
(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键
教学重点:用代入消元法解二元一次方程组
教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
教具准备教师准备:ppt多媒体课件投影仪
教学方法本节课采用“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。
教学过程
(一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
(二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y
x+y=22
2x+y=40
②设胜的场数是x,则负的场数为22-x
2x+(22-x)=40
2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
第二步,用代入法解方程组把下列方程写成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0学生活动:尝试自主完成,教师纠正思考:能否用含y的式子来表示x呢?
例1用代入法解方程组x-y=3①3x-8y=14②
思路点拨:先观察这个方程组中哪一项系数较小,发现①中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入②消元。
解:由①变形得X=y+3③
把③代入②,得3(y+3)-8y=14
解这个方程,得y=-1
把y=-1代入③,得X=2
所以这个方程组的解是X=2y=-1
如何检验得到的结果是否正确?学生活动:口答检验.
第三步,在实际生活中应用代入法解方程组
例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?思路点拨:本题是实际应用问题,可采用二元一次方程组为工具求解,这就需要构建模型,寻找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应该分装x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=0y=50000
第四步,小组讨论,得出步骤学生活动:根据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).
(三)分组比赛,巩固新知为了激发学生的兴趣,巩固所学的知识,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集知识性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。
(四)归纳总结,知识回顾1、通过这节课的学习活动,你有什么收获?2、你认为在运用代入法解二元一次方程组时,应注意什么问题?
(五)布置作业1、作业:P103页第1、2、4题2、思考:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,用于解决新问题.基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计.在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学.教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中.重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的.
七年级数学二元一次方程组教案范文三:二元一次方程组
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男_各几人吗?为什么?
(1)如果设本班男生x人,_y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比_多了2人。设男生x人,_y人.方程如何表示?x,y的值是多少?
3.本班男生比_多2人且男_共40人.设该班男生x人,_y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解.
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验.]
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数_时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
数学二元一次方程组测试题
一、填空题(每题4分,共20分)
1.写出二元一次方程的一个正整数解_____________.
2.若与是同类项,则
3.已知则
4.已知则.
5.若则.
二、解下列方程组(每题8分,共32分)
三、解答题(每题8分,共24分)
10.满足方程组的x,y的值的和等于2,求m的值.
11.甲、乙二人同解方程组,甲正确解得,乙因抄错了c,解得,求a、b、c的`值.
12.已知关于x、y的方程组和的解相同,求的值.
四、列方程组解应用题(每题8分,共24分)
13.据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间换表前换表后
峰时(8:00~21:00)谷时(21:00~次日8:00)
电价0.52元/千瓦时x元/千瓦时y元/千瓦时
已知每千瓦时的峰时价比谷时价高0.25元.小卫家对换表后最初使用的100千瓦时的用电情况进行统计分析得知:峰时用电量占80%,谷时用电量占20%,与换表前相比,电费共下降2元.请你求出表格中的x和y的值.
14.甲乙两工厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%.两厂共生产了机床400台.问上月两个厂各比计划超额生产了多少台?
15.牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利最多,为什么?
答案:
1.(不惟一) 2.2,-1。 3.-1. 4.1∶2∶3. 5.14.
6. 7. 8. 9. 10.m=4.
11. 12. 1. 13.0.55,0.30. 14.24台,16台.
15.方案一:4天生产奶片4吨,其余直接销售1×4×2000+(9-4)×500=10500(元);方案二:设x天生产奶片y天生产酸奶.从而(元).所以选择方案二获利最多.