下面是小编给大家带来高二数学上学期必拿下的知识点总结(共含9篇),一起来阅读吧,希望对您有所帮助。同时,但愿您也能像本文投稿人“北部湾之旅”一样,积极向本站投稿分享好文章。
一定义
集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。
二集合的抽象表示形式
用大写字母A,B,C??表示集合;用小写字母a,b,c??表示元素。
三元素与集合的关系
有属于,不属于关系两种。元素a属于集合A,记作aA?;元素a不属于集合A,记作aA?。
四几种集合的命名
有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用?表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。
五集合的表示方法
(一)列举法:把元素一一列举在大括号内的表示方法,例如:{a,b,c}。注意:凡是以列举法形式出现的集合,往往考察元素的互异性。
(二)描述法:有以下两种描述方式
1.代号描述:【例】方程2x3x+2=0?的所有解组成的集合,可表示为{x|x2-3x+2=0}。x是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合中的元素符合的条件。
2.文字描述:将说明元素性质的一句话写在大括号内。【例】{大于2小于5的整数};描述法表示的集合一旦出现,首先需要分析元素的意义,也就说要判断元素到底是什么。
(三)韦恩图法:用图形表示集合定义了两个集合之间的所有关系。子集有两种极限情况:
(1)当A成为空集时,A仍为B的子集;
(2)当A和B相等时,A仍为B的子集。真子集:如果所有属于A的元素都属于B,而且B中至少有一个元素不属于A,那么A叫做B的真子集,记作AB?或。真子集也是子集,和子集的区别之处在于。
对于同一个集合,其真子集的个数比子集少一个。
(1)求子集或真子集的个数,由n各元素组成的集合,有2n个子集,有2n-1个真子集;
(2)空集的考查:凡是提到一个集合是另一个集合的子集,作为子集的集合首先可以是空集,的等价形式主要有。
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
求导数的方法
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即
二、关于极限
.1.数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:
2函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数.
2、在的导数.
3.函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=A-1B-2C1D
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=;
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:
二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
1.四则混合运算。不打草稿,运算随意性大,没有注重检验造成运算错误。
【错例1】29×[3328÷(32×105-3328)]【错因分析】多位数乘除法不打草稿
【错例2】75+125÷25×4【错因分析】违反运算顺序,乱用性质简便。
=200÷100=2
2、简便运算,对算式没有整体把握和辨析不够,数感不强。对定律、性质、技巧的辨析能力弱,造成错误。另外由于审题错误,符号、数据抄错现象时有发生。
【错例1】96×36-32×108【错因分析】数感不强,96可以用乘法分
=3456-3456拆成32×3,32为公因数,
=0再用乘法分配律简便。
【错例2】4×(125×25)【错因分析】应该用乘法交换律和结合
=4×125×4×25律简便,辨析能力差,与乘法
分配律混淆。
【错例3】558-(34+888÷3)【错因分析】数据抄错,计算习惯差。
=588-(34+888÷3)
【错例4】185-75+25【错因分析】应该按运算顺序做,乱用
=185-100减法性质简便。
=85
3、应用题未认真审题,正确理解题意,解题方法不得当。
【错例1】爷爷今年65岁,比小丽的5倍还多5岁,小丽今年几岁?
错误列式:65÷5+5或65÷5-5
【错因分析】没有画线段图,应该先从65中减去5,求出5倍数,再求1倍数。
正确列式:(65-5)÷5
【错例2】用一批纸装订同样大小的练习本,如果每本18页,可以订200本。如果每本16页,可以多订多少本?
错误列式:18×200÷16
【错因分析】审题不清,问题求可以多订多少本?而不是可以订多少本?
正确方法1:现在订的`本数-原来订的本数=多订的本数
18×200÷16-200
正确方法2:相差的总页数÷现在每本的页数=多订的本数
(18-16)×200÷16
数级……亿级万级个级
数位……千亿位百亿位十亿位亿
位千万位百万位十万位万
位千
位百
位十
位个
位
计数单位……千亿百亿十亿亿千万百万十万万千百十个
2、十进制计数法。相邻两个计数单位之间的进率是十。
3、数数。能一万一万地数,十万十万地数,一百万一百万地数……
亿以内数的读法、写法知识点:
1、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的.数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
(1)在马路一侧种树,1°若两头都种树:树的棵树-1=段数
2°若其中一头种,另一头不种:段数=树的棵树
3°若两头都不种:树的棵树+1=段数
(2)若是一个闭合的图形,如:池塘一周、长方形或是三角形一周等,树的.棵树=段数。
二、运算律
(1)加法:交换律:a+b=b+a乘法:交换律:a×b=b×a
结合律:(a+b)+c=a+(b+c)结合律:(a×b)×c=a×(b×c)
例1:37+56+63=56+(37+63)运用了(加法交换律和结合律)
25×13×4=13×(25×4)运用了(乘法交换律和结合律)
(2)乘法中配对的数字有:25×4,125×8……
例2:简便运算:327-(127+100)=327-127-100……减法的性质
720÷54=720÷(6×9)=720÷9÷6……除法的性质
125×25×32=(125×8)×(25×4)
1、解决合理安排时间问题需要按以下步骤进行:
(1)明确完成一项工作要做哪些事情。
(2)知道每项事情各需要多长时间。
(3)明确先做什么,后做什么,哪些事情可以同时做就尽量同时做,这样最省时间。
2、烙饼问题的解决:
在每次只能烙两张饼,两面都要烙的情况下:
①烙3张饼:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。
②烙多张饼:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的方法烙,最节省时间。
一般的解决方法:
公式:烙饼所需的最短时间=烙饼张数×烙每面饼所需的时间(烙一张除外)
例如烙5张饼的时间,每面要烙3分钟,5×3=15(分)
烙8张饼的时间,每面要烙3分钟,8×3=24(分)
3、田忌赛马(对策论):解决同一问题可以用不同的策略,要学会寻找方案。在与对方比赛时,要选择一个利多弊少的策略,从而获得胜利。
数学长度单位和角的知识点
1、尺子是测量物体长度的工具,常用的长度单位有:米和厘米。食指的宽度约有1厘米,伸开双臂大约1米。1米=100厘米100厘米=1米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度时:把尺的“0”刻度对准物体的左端,再看右端对着刻度几,就是几厘米。物体长度=较大数-较小数,例如:从刻度“0”到刻度“6”之间是6厘米(6-0=6),从刻度“6”到刻度“9”之间是3厘米(9-6=3);还可以用数一数的方法数出物体的长度。(算,数)
4、线段是直的,可以量出长度。
5、画线段的方法:从尺子的“0”刻度开始画起,长度是几就画到几。(找点画线;有时还要先算出长度再画线。如画一条比6厘米短2厘米的线段。)
6、角有1个顶点,2条直边。锐角比直角小,钝角比直角大,钝角比锐角大。锐角<直角<钝角(钝角>直角>锐角)。
7、用三角板可以画出直角,直角要标出直角符号(也叫垂足符号)。
8、所有的直角都一样大。要知道一个角是不是直角,可以用三角板上的直角比一比。长方形和正方形都有4个角,4个都是直角。
9、角的大小与两条边的长短无关,与两条边叉开的大小有关。
10、每一个三角板上都有3个角,其中有1个是直角,另外2个是锐角。
11、角的画法:从一个点起,用尺子向不同的方向画两条笔直的线,就画成一个角。(从一点引出两条射线所组成的图形叫作角。)
小学数学成绩太差如何补习
首先我们应该先分析孩子们数学学不好的原因,有很多的孩子们是因为原本数学基础就非常的薄弱,跟不上老师们复习的进度,所以越到后面越没有自信心。还有的孩子们是因为数学基础比较好,但是容易对知识点进行混淆,在做题的时候没有自己的思路,不会对知识点进行运用。最后一类孩子们是在考试时非常的紧张、怯场,平时会做的题在考试时也非常容易丢分大脑一片空白。
孩子们在学习数学的过程中,可以通过数学的定义对知识点进行记忆,如果对解题的步骤和方法掌握的不够扎实,可以在课下多进行练习。如果孩子们认为自己学习非常的慢,那就可以选择报名辅导班,来帮助孩子们学习。
★ 高二数学知识点